Two applications of analytic functors

We apply the theory of analytic functors to two topics related to theoretical computer science. One is a mathematical foundation of certain syntactic well-quasi-orders and well-orders appearing in graph theory, the theory of term rewriting systems, and proof theory. The other is a new verification of the Lagrange-Good inversion formula using several ideas appearing in semantics of lambda calculi, especially the relation between categorical traces and fixpoint operators. Copyright 2002 Elsevier Science B.V.

[1]  Nachum Dershowitz,et al.  Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[2]  Harvey Gerber,et al.  An extension of Schütte's Klammersymbols , 1967 .

[3]  C. Nash-Williams On well-quasi-ordering infinite trees , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Gavin M. Bierman What is a Categorical Model of Intuitionistic Linear Logic? , 1995, TLCA.

[5]  D. Isles,et al.  Regular Ordinals and Normal Forms , 1970 .

[6]  Stephen G. Simpson,et al.  Nonprovability of Certain Combinatorial Properties of Finite Trees , 1985 .

[7]  J. Rotman An Introduction to the Theory of Groups , 1965 .

[8]  Michael Barr,et al.  Additions and Corrections to "Terminal Coalgebras in Well-founded Set Theory" , 1994, Theor. Comput. Sci..

[9]  Ramsey Theory,et al.  Ramsey Theory , 2020, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.

[10]  Carl A. Gunter Semantics of programming languages: structures and techniques , 1993, Choice Reviews Online.

[11]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[12]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[13]  I-Chiau Huang Reversion of power series by residues , 1998 .

[14]  H. Friedman,et al.  Harvey Friedman's Research on the Foundations of Mathematics , 1985 .

[15]  S. Feferman Formal Theories for Transfinite Iterations of Generalized Inductive Definitions and Some Subsystems of Analysis , 1970 .

[16]  J. Kruskal Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .

[17]  R. Ehrenborg,et al.  A Bijective Proof of Infinite Variated Good′s Inversion , 1994 .

[18]  Tsukuba J. Math A CONSISTENCY PROOF OF A SYSTEM INCLUDING FEFERMAN'S ID, BY TAKEUTFS REDUCTION METHOD , 1987 .

[19]  Pierre Lescanne Uniform Termination of Term Rewriting Systems: Recursive Decomposition Ordering with Status , 1984, CAAP.

[20]  Zohar Manna,et al.  Proving termination with multiset orderings , 1979, CACM.

[21]  Ursula Martin,et al.  The order types of termination orderings on monadic terms, strings and multisets , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[22]  J. Bell STONE SPACES (Cambridge Studies in Advanced Mathematics 3) , 1987 .

[23]  Jean-Yves Girard,et al.  Normal functors, power series and λ-calculus , 1988, Ann. Pure Appl. Log..

[24]  Ryu Hasegawa,et al.  An Analysis of Divisibility Orderings and Recursive Path Orderings , 1997, ASIAN.

[25]  Paul D. Seymour,et al.  Graph minors. VIII. A kuratowski theorem for general surfaces , 1990, J. Comb. Theory, Ser. B.

[26]  Wilfried Buchholz,et al.  A new system of proof-theoretic ordinal functions , 1986, Ann. Pure Appl. Log..

[27]  Paul Seymour,et al.  The metamathematics of the graph minor theorem , 1985 .

[28]  Robert D. Tennent,et al.  Semantics of programming languages , 1991, Prentice Hall International Series in Computer Science.

[29]  W. Pohlers,et al.  A short course in ordinal analysis , 1993 .

[30]  Stephen G. Simpson,et al.  Ordinal numbers and the Hilbert basis theorem , 1988, Journal of Symbolic Logic.

[31]  真人 長谷川 Models of sharing graphs : a categorical semantics of let and letrec , 1999 .

[32]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[33]  Paul D. Seymour,et al.  Graph minors. IV. Tree-width and well-quasi-ordering , 1990, J. Comb. Theory, Ser. B.

[34]  Wilhelm Ackermann Konstruktiver Aufbau eines Abschnitts der zweiten Cantorschen Zahlenklasse , 1951 .

[35]  Ross Street,et al.  Traced monoidal categories , 1996 .

[36]  I. J. Good,et al.  Generalizations to several variables of Lagrange's expansion, with applications to stochastic processes , 1960, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  Nachum Dershowitz Orderings for Term-Rewriting Systems , 1979, FOCS.

[38]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[39]  Ryu Hasegawa,et al.  Well-Ordering of Algebras and Kruskal's Theorem , 1994, Logic, Language and Computation.

[40]  Ira M. Gessel,et al.  A combinatorial proof of the multivariable lagrange inversion formula , 1987, J. Comb. Theory, Ser. A.

[41]  Gilbert Labelle,et al.  On asymmetric structures , 1992, Discret. Math..

[42]  Masahito Hasegawa,et al.  Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda Calculi , 1997, TLCA.

[43]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[44]  D. Wright,et al.  Reversion of power series and the extended Raney coefficients , 1997 .

[45]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[46]  Dick H. J. Jongh,et al.  Well-partial orderings and hierarchies , 1977 .

[47]  Yeong-Nan Yeh The calculus of virtual species and K-species , 1986 .

[48]  Ross Street,et al.  Braided Tensor Categories , 1993 .

[49]  Jean-Yves Girard,et al.  Π12-logic, Part 1: Dilators , 1981 .

[50]  S. Lane Categories for the Working Mathematician , 1971 .

[51]  A. Joyal Foncteurs analytiques et espèces de structures , 1986 .

[52]  Ryu Hasegawa The Generating Functions of Lambda Terms , 1996, DMTCS.

[53]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[54]  de Ng Dick Bruijn The Lagrange-Good inversion formula and its application to integral equations , 1983 .

[55]  Nick Benton,et al.  A Term Calculus for Intuitionistic Linear Logic , 1993, TLCA.

[56]  Paul Taylor,et al.  Quantitative Domains, Groupoids and Linear Logic , 1989, Category Theory and Computer Science.

[57]  Wilfried Buchholz,et al.  Proof Theory of Impredicative Subsystems of Analysis , 1988 .

[58]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[59]  A. Joyal,et al.  Une th6orie combinatoire des s6ries formelles , 1981 .

[60]  C.-H.L. Ong,et al.  Correspondence between operational and denotational semantics: the full abstraction problem for PCF , 1995, LICS 1995.

[61]  James R. Russell,et al.  A constructive proof of Higman's lemma , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.