Substrate current at cryogenic temperatures: Measurements and a two-dimensional model for CMOS technology

This work characterizes the temperature, channel length, and voltage dependences of substrate current, and presents a local model describing this behavior using Shockley's lucky electron (LE) model as a basis. For n-channel (p-channel) devices, the model is extended using a Maxwell-Boltzmann (MB) distribution of hot-electron (hole) energies above (below) the conduction (valence) band minimum (maximum). The model has been implemented in CADDET, a 2-D device simulator, and is able to explain all of the important features of substrate current which have been reported to date. The model is discussed in the context of works which look at both the local and physical nature of the impact ionization phenomenon. Based on this discussion, the model's parameters are shown to have a solid physical basis, requiring no reliance on curve fitting. The agreement between data and simulations thus enhances physical understanding of substrate current in MOSFET's, and warrants confident design of CMOS technologies for cryogenic operation.

[1]  M. Fukuma,et al.  Two-dimensional MOSFET simulation with energy transport phenomena , 1984, 1984 International Electron Devices Meeting.

[2]  B. Eitan,et al.  Impact ionization at very low voltages in silicon , 1982 .

[3]  Jeffrey Frey,et al.  AN EFFICIENT TECHNIQUE FOR TWO‐DIMENSIONAL SIMULATION OF VELOCITY OVERSHOOT EFFECTS IN Si AND GaAs DEVICES , 1982 .

[4]  J. Woo,et al.  Short-channel effects in MOSFET's at liquid-Nitrogen temperature , 1986, IEEE Transactions on Electron Devices.

[5]  R. L. Mattis,et al.  Resistivity‐Dopant Density Relationship for Phosphorus‐Doped Silicon , 1980 .

[6]  Seiki Ogura,et al.  Submicron MOSFET performance at liquid nitrogen temperatures , 1986, 1986 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[7]  T. Thurgate,et al.  IVB-7 an impact ionization model for 2D device simulation , 1984, IEEE Transactions on Electron Devices.

[8]  Sheng S. Li,et al.  The dopant density and temperature dependence of hole mobility and resistivity in boron doped silicon , 1978 .

[9]  R. Muller,et al.  Hot-electron currents in very short channel MOSFET's , 1983, IEEE Electron Device Letters.

[10]  G. L. Pearson,et al.  Electrical Properties of Pure Silicon and Silicon Alloys Containing Boron and Phosphorus , 1949 .

[11]  L. Risch,et al.  Optimization of lightly doped drain MOSFETs using a new quasiballistic simulation tool , 1984, 1984 International Electron Devices Meeting.

[12]  T. L. Honan,et al.  Hot-electron-induced degradation in MOSFET's at 77 K , 1985, IEEE Transactions on Electron Devices.

[13]  G. Gildenblat,et al.  Low-temperature substrate current characterization of N-channel MOSFET's , 1985, 1985 International Electron Devices Meeting.

[14]  B. Ridley Lucky-drift mechanism for impact ionisation in semiconductors , 1983 .

[15]  R. E. Thomas,et al.  Carrier mobilities in silicon empirically related to doping and field , 1967 .

[16]  E. Takeda,et al.  An empirical model for device degradation due to hot-carrier injection , 1983, IEEE Electron Device Letters.

[17]  R. L. Mattis,et al.  Resistivity‐Dopant Density Relationship for Boron‐Doped Silicon , 1980 .

[18]  G. Mahan Hot electrons in one dimension , 1985 .

[19]  A. G. Chynoweth,et al.  Ionization Rates for Electrons and Holes in Silicon , 1958 .

[20]  H. Levinstein,et al.  Impurity and Lattice Scattering Parameters as Determined from Hall and Mobility Analysis in n-Type Silicon , 1973 .

[21]  K. Nakamura,et al.  A simple method to evaluate device lifetime due to hot-carrier effect under dynamic stress , 1986, IEEE Electron Device Letters.

[22]  Richard C. Jaeger,et al.  Simple analytical models for the temperature dependent threshold behavior of depletion-mode devices , 1979 .

[23]  G. A. Baraff,et al.  Distribution Functions and Ionization Rates for Hot Electrons in Semiconductors , 1962 .

[24]  Chenming Hu,et al.  Correlation between substrate and gate currents in MOSFET's , 1982, IEEE Transactions on Electron Devices.

[25]  C. Hu Lucky-electron model of channel hot electron emission , 1979, 1979 International Electron Devices Meeting.

[26]  R. Jaeger,et al.  Simple analytical models for the temperature dependent threshold behavior of depletion-mode devices , 1979, IEEE Transactions on Electron Devices.

[27]  C. Jacoboni,et al.  A review of some charge transport properties of silicon , 1977 .

[28]  M. Mock A two-dimensional mathematical model of the insulated-gate field-effect transistor , 1973 .

[29]  T. Thurgate,et al.  An Impact Ionization Model for Two-Dimensional Device Simulation , 1985, IEEE Journal of Solid-State Circuits.

[30]  K. Yamaguchi Field-dependent mobility model for two-dimensional numerical analysis of MOSFET's , 1979, IEEE Transactions on Electron Devices.

[31]  Tak H. Ning,et al.  Emission probability of hot electrons from silicon into silicon dioxide , 1977 .

[32]  Chenming Hu,et al.  Hot-electron-induced photon and photocarrier generation in Silicon MOSFET's , 1984, IEEE Transactions on Electron Devices.

[33]  J.Y.C. Sun,et al.  IIIB-1 degradation of 77-K MOSFET characteristics due to channel hot electrons , 1984, IEEE Transactions on Electron Devices.

[34]  S. Li,et al.  The dopant density and temperature dependence of electron mobility and resistivity in n-type silicon , 1977 .

[35]  V. L. Rideout,et al.  Very small MOSFET's for low-temperature operation , 1977, IEEE Transactions on Electron Devices.

[36]  P. A. Wolff,et al.  Theory of Electron Multiplication in Silicon and Germanium , 1954 .

[37]  S. Tewksbury,et al.  N-channel enhancement-mode MOSFET characteristics from 10 to 300 K , 1981, IEEE Transactions on Electron Devices.

[38]  S.E. Laux,et al.  A study of avalanche breakdown in scaled n-MOSFETs , 1984, 1984 International Electron Devices Meeting.

[39]  C. R. Crowell,et al.  Temperature dependence of avalanche multiplication in semiconductors , 1966 .

[40]  C. Hu,et al.  Lucky-electron model of channel hot-electron injection in MOSFET'S , 1984 .

[41]  Ryo Dang,et al.  Modelling of hot‐carrier effects in small‐geometry MOSFETs , 1984 .

[42]  H.P. Vyas,et al.  Cryogenic behavior of scaled CMOS devices , 1984, 1984 International Electron Devices Meeting.

[43]  G. Gildenblat,et al.  Investigation of cryogenic CMOS performance , 1985, 1985 International Electron Devices Meeting.

[44]  W. Shockley Problems related to p-n junctions in silicon , 1961 .