Highly reliable BEOL-transistor with oxygen-controlled InGaZnO and Gate/Drain offset design for high/low voltage bridging I/O operations

Reliability of BEOL-transistors with a wide-gap oxide semiconductor InGaZnO (IGZO) film, integrated on LSI Cu-interconnects, is intensively discussed in terms of application to on-chip bridging I/Os between low and high voltage interactive operations (Fig. 1). Oxygen control in the thin IGZO film was found to be important to stabilize the device characteristics. A conventional IGZO tends to contain deep-level donor-states, which cause temperature and bias instabilities. The oxygen control in IGZO reduces these deep donor-states to improve operation instability. A gate/drain offset structure effectively suppresses the hot-carrier generation, resulting in a stable operation at high Vd bias condition (∼20V). The oxygen-controlled IGZO and gate/drain offset structure are important for making the BEOL-transistors applicable to high/low voltage I/Os bridging.