An optimal sign test for one-sample bivariate location model using an alternative bivariate ranked-set sample

The aim of this paper is to find an optimal alternative bivariate ranked-set sample for one-sample location model bivariate sign test. Our numerical and theoretical results indicated that the optimal designs for the bivariate sign test are the alternative designs with quantifying order statistics with labels {((r+1)/2, (r+1)/2)}, when the set size r is odd and {(r/2+1, r/2), (r/2, r/2+1)} when the set size r is even. The asymptotic distribution and Pitman efficiencies of these designs are derived. A simulation study is conducted to investigate the power of the proposed optimal designs. Illustration using real data with the Bootstrap algorithm for P-value estimation is used.

[1]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[2]  Omer Ozturk One- and two-sample sign tests for ranked set sample selective designs , 1999 .

[3]  Mohammad Fraiwan Al-Saleh,et al.  Theory & Methods: Estimation of bivariate characteristics using ranked set sampling , 2002 .

[4]  Mark E. Johnson Multivariate Statistical Simulation: Johnson/Multivariate , 1987 .

[5]  G. P. Patil,et al.  Ranked Set Sampling: a Bibliography , 2004, Environmental and Ecological Statistics.

[6]  S. Hora Statistical Inference Based on Ranks , 1986 .

[7]  G. McIntyre,et al.  A method for unbiased selective sampling, using ranked sets , 1952 .

[8]  Kazumasa Wakimoto,et al.  On unbiased estimates of the population mean based on the sample stratified by means of ordering , 1968 .

[9]  Mark E. Johnson,et al.  Multivariate Statistical Simulation , 1989, International Encyclopedia of Statistical Science.

[10]  L. Calderwood,et al.  Socio-demographic characteristics , 2003 .

[11]  Zehua Chen On ranked-set sample quantiles and their applications , 2000 .

[12]  Gang Zheng,et al.  Resampling methods for ranked set samples , 2006, Comput. Stat. Data Anal..

[13]  M. S. Ridout,et al.  On ranked set sampling for multiple characteristics , 2003, Environmental and Ecological Statistics.

[14]  Douglas A. Wolfe,et al.  Nonparametric Two-Sample Procedures for Ranked-Set Samples Data , 1992 .

[15]  Hannu Oja,et al.  Bivariate Sign Tests , 1989 .

[16]  Chunming Zhang,et al.  Ranked Set Sampling: Theory and Applications , 2005, Technometrics.

[17]  Z. Bai,et al.  Ranked set sampling , 2004 .

[18]  Hani M. Samawi,et al.  More powerful sign test using median ranked set sample: Finite sample power comparison , 2003 .

[19]  G. P. Patil,et al.  Ranked set sampling: an annotated bibliography , 1995, Environmental and Ecological Statistics.

[20]  Lucio Barabesi The computation of the distribution of the sign test statistic for ranked-set sampling , 1998 .

[21]  A NONPARAMETRIC TEST OF SYMMETRY VERSUS ASYMMETRY FOR RANKED-SET SAMPLES , 2001 .

[22]  THE OPTIMAL RANKED-SET SAMPLING SCHEME FOR INFERENCE ON POPULATION QUANTILES , 2003 .

[23]  P. Sen,et al.  Theory of rank tests , 1969 .

[24]  Thomas P. Hettmansperger The ranked-set sample sign test , 1995 .

[25]  Gutti Jogesh Babu,et al.  Sign test for ranked-set sampling , 1996 .

[26]  T. Sager,et al.  Characterization of a Ranked-Set Sample with Application to Estimating Distribution Functions , 1988 .

[27]  Douglas A. Wolfe,et al.  Alternative ranked set sampling protocols for the sign test , 2000 .

[28]  Douglas A. Wolfe,et al.  The Effect of Imperfect Judgment Rankings on Properties of Procedures Based on the Ranked-Set Samples Analog of the Mann-Whitney-Wilcoxon Statistic , 1994 .

[29]  Francisco J. Samaniego,et al.  Nonparametric Maximum Likelihood Estimation Based on Ranked Set Samples , 1994 .

[30]  Hannu Oja,et al.  Affine Invariant Multivariate Multisample Sign Tests , 1994 .

[31]  Hani M. Samawi,et al.  Bivariate Sign Test for One-Sample Bivariate Location Model Using Ranked Set Sample , 2006 .