Unexpected Biosynthetic Precursors of Amarogentin − A Retrobiosynthetic 13C NMR Study

[1]  M. Keil,et al.  Production of amarogentin in root cultures of Swertia chirata. , 2000, Planta medica.

[2]  W. Eisenreich,et al.  Elucidation of biosynthetic pathways by retrodictive/predictive comparison of isotopomer patterns determined by NMR spectroscopy. , 2000, Genetic engineering.

[3]  W. Eisenreich,et al.  QUANTITATIVE ASSESSMENT OF METABOLIC FLUX BY 13C NMR ANALYSIS. BIOSYNTHESIS OF ANTHRAQUINONES IN RUBIA TINCTORUM , 1999 .

[4]  W. Eisenreich,et al.  Biosynthesis of bitter acids in hops. A (13)C-NMR and (2)H-NMR study on the building blocks of humulone. , 1999, European journal of biochemistry.

[5]  Hartmut K. Lichtenthaler,et al.  THE 1-DEOXY-D-XYLULOSE-5-PHOSPHATE PATHWAY OF ISOPRENOID BIOSYNTHESIS IN PLANTS. , 1999, Annual review of plant physiology and plant molecular biology.

[6]  W. Eisenreich,et al.  Analysis of metabolic pathways via quantitative prediction of isotope labeling patterns: a retrobiosynthetic 13C NMR study on the monoterpene loganin , 1999 .

[7]  M. Rohmer The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. , 1999, Natural product reports.

[8]  W. Eisenreich,et al.  Elucidation of novel biosynthetic pathways and metabolite flux patterns by retrobiosynthetic NMR analysis , 1998 .

[9]  R. Verpoorte,et al.  The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture , 1998, FEBS letters.

[10]  W. Eisenreich,et al.  The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. , 1998, Chemistry & biology.

[11]  W. Eisenreich,et al.  Biosynthesis of the Diterpene Verrucosan-2β-ol in the Phototrophic Eubacterium Chloroflexus aurantiacus , 1998, The Journal of Biological Chemistry.

[12]  W. Eisenreich,et al.  Rearrangement reactions in the biosynthesis of molybdopterin , 1998 .

[13]  W. Eisenreich,et al.  Retrobiosynthetic NMR Studies with 13C-Labeled Glucose , 1997, The Journal of Biological Chemistry.

[14]  G. Cordell,et al.  Amarogentin, a naturally occurring secoiridoid glycoside and a newly recognized inhibitor of topoisomerase I from Leishmania donovani. , 1996, Journal of natural products.

[15]  M. Busch-Stockfisch,et al.  Sensorische Beurteilung des Bittergeschmacks von Amarogentin und Austauschmöglichkeiten gegen Chinin in Erfrischungsgetränken 2. Einfluß von Saccharin Na/Fructose und Citronensäure , 1993 .

[16]  Hyeongjin Cho,et al.  Synthesis of D-(-)-[1,7-13C2]shikimic acid , 1992 .

[17]  W. Eisenreich,et al.  Biosynthesis of nucleotides, flavins, and deazaflavins in Methanobacterium thermoautotrophicum. , 1991, The Journal of biological chemistry.

[18]  M. Busch-Stockfisch,et al.  Sensorische Beurteilung des Bittergeschmacks von Amarogentin und Austauschmöglichkeiten gegen Chinin in Erfrischungsgetränken , 1991 .

[19]  H. Kuwajima,et al.  Studies on monoterpene glucosides and related compounds. LXV. Biosynthesis of the biphenylcarboxylic acid moiety of amarogentin and amaroswerin. , 1990 .

[20]  O. Tanaka,et al.  Studies on the mutagenicity of swertiae herba. III. Components which become mutagenic on nitrite treatment. , 1986, Chemical & pharmaceutical bulletin.

[21]  Y. Tomita,et al.  Iridoid Glucoside of Swertia japonica. , 1985, Planta medica.

[22]  G. Fleet,et al.  Enantiospecific synthesis of shikimic acid from D-mannose: formation of a chiral cyclohexene by intramolecular olefination of a carbohydrate-derived intermediate , 1984 .

[23]  H. Inouye,et al.  Über die monoterpenglucoside und verwandte naturstoffe—XIV : Die struktur der beiden stark bitter schmeckenden glucoside amarogentin und amaroswerin aus Swertia japonica , 1971 .

[24]  H. Inouye,et al.  Zwei stark bittere glucoside aus swertia japonica makino: Amarogentin und amaroswerin , 1968 .

[25]  F. Skoog,et al.  A revised medium for rapid growth and bio assays with tobacco tissue cultures , 1962 .