Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil

[1]  R. Ruoff,et al.  Chemically induced transformation of chemical vapour deposition grown bilayer graphene into fluorinated single-layer diamond , 2019, Nature Nanotechnology.

[2]  Bin Wang,et al.  Colossal grain growth yields single-crystal metal foils by contact-free annealing , 2018, Science.

[3]  Bin Wang,et al.  Camphor‐Enabled Transfer and Mechanical Testing of Centimeter‐Scale Ultrathin Films , 2018, Advanced materials.

[4]  R. Ruoff,et al.  Highly Oriented Monolayer Graphene Grown on a Cu/Ni(111) Alloy Foil. , 2018, ACS nano.

[5]  S. Sahoo,et al.  Grain size-dependent thermal conductivity of polycrystalline twisted bilayer graphene , 2017 .

[6]  M. Willinger,et al.  Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging , 2016, Nature Communications.

[7]  H. Jeong,et al.  Wafer‐Scale Single‐Crystalline AB‐Stacked Bilayer Graphene , 2016, Advanced materials.

[8]  S. Okada,et al.  Highly Uniform Bilayer Graphene on Epitaxial Cu–Ni(111) Alloy , 2016 .

[9]  R. Ruoff,et al.  Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. , 2016, Nature nanotechnology.

[10]  P. Chu,et al.  Synthesis of Layer‐Tunable Graphene: A Combined Kinetic Implantation and Thermal Ejection Approach , 2015 .

[11]  R. Xiang,et al.  Equilibrium chemical vapor deposition growth of Bernal-stacked bilayer graphene. , 2014, ACS nano.

[12]  A. Balandin,et al.  Thermal conductivity of twisted bilayer graphene. , 2014, Nanoscale.

[13]  Ting Zhu,et al.  Fracture toughness of graphene , 2014, Nature Communications.

[14]  P. Ajayan,et al.  Controllable and Rapid Synthesis of High-Quality and Large-Area Bernal Stacked Bilayer Graphene Using Chemical Vapor Deposition , 2014 .

[15]  L. Chernozatonskii,et al.  Phase diagram of quasi-two-dimensional carbon, from graphene to diamond. , 2014, Nano letters.

[16]  Ehsan Hosseinian,et al.  Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films. , 2013, Nanoscale.

[17]  Taek‐Soo Kim,et al.  Tensile testing of ultra-thin films on water surface , 2013, Nature Communications.

[18]  R. Ruoff,et al.  Conversion of multilayer graphene into continuous ultrathin sp3-bonded carbon films on metal surfaces , 2013, Scientific Reports.

[19]  X. Duan,et al.  Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene , 2013, Nature Communications.

[20]  A. Dolocan,et al.  Growth of adlayer graphene on Cu studied by carbon isotope labeling. , 2013, Nano letters.

[21]  R. Piner,et al.  Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils. , 2012, ACS nano.

[22]  X. Duan,et al.  High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. , 2012, ACS nano.

[23]  C. Ciobanu,et al.  Real-time microscopy of graphene growth on epitaxial metal films: role of template thickness and strain. , 2012, Small.

[24]  L. Wang,et al.  Elastic behavior of bilayer graphene under in-plane loadings , 2012 .

[25]  G. Tian,et al.  Simulation of the Structure and Properties of Room Temperature Molten Salts 1-Ethyl-3-Methyl-Imidazolium Chloride/Chloroaluminate , 2012 .

[26]  R. Piner,et al.  Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils. , 2011, Nano letters.

[27]  Zhongfan Liu,et al.  Segregation Growth of Graphene on Cu–Ni Alloy for Precise Layer Control , 2011 .

[28]  A. Bostwick,et al.  Growth from below: graphene bilayers on Ir(111). , 2011, ACS nano.

[29]  Hui Li,et al.  Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. , 2011, Nano letters.

[30]  Z. Zhong,et al.  Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. , 2010, Nano letters.

[31]  F. M. Peeters,et al.  NANOINDENTATION OF A CIRCULAR SHEET OF BILAYER GRAPHENE , 2010, 1105.2514.

[32]  Samia Subrina,et al.  Dimensional crossover of thermal transport in few-layer graphene. , 2010, Nature materials.

[33]  F. Xia,et al.  Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. , 2010, Nano letters.

[34]  L. Chernozatonskii,et al.  Diamond-like C2H nanolayer, diamane: Simulation of the structure and properties , 2009, 1002.0634.

[35]  S. Tolbert,et al.  Tensile testing of thin films supported on compliant substrates , 2009 .

[36]  Seongyong Park,et al.  High Resolution TEM and Electron Diffraction Study of Graphene Layers , 2009, Microscopy and Microanalysis.

[37]  T. Tang,et al.  Direct observation of a widely tunable bandgap in bilayer graphene , 2009, Nature.

[38]  M. Hybertsen,et al.  Electronic structure of few-layer epitaxial graphene on Ru(0001). , 2009, Nano letters.

[39]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[40]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[41]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[42]  L. Vandersypen,et al.  Gate-induced insulating state in bilayer graphene devices. , 2007, Nature materials.

[43]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[44]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[45]  C. Hierold,et al.  Spatially resolved Raman spectroscopy of single- and few-layer graphene. , 2006, Nano letters.

[46]  P. Eklund,et al.  Raman scattering from high-frequency phonons in supported n-graphene layer films. , 2006, Nano letters.

[47]  E. .. Mittemeijer,et al.  The solubility of C in solid Cu , 2004 .

[48]  R. D. Emery,et al.  Tensile behavior of free-standing gold films. Part I. coarse-grained films , 2003 .

[49]  M. Jiang,et al.  Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys. , 2016, Nature materials.

[50]  S. Bae,et al.  1 30-Inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes , 2009 .

[51]  N. Peres,et al.  1 Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene , 2008 .

[52]  G. Povirk,et al.  Tensile Behavior of Free-Standing Gold Films , 1997 .

[53]  M. Tai,et al.  Reactivities of transition metals with carbon: Implications to the mechanism of diamond synthesis under high pressure , 1997 .

[54]  G. Reiss,et al.  Stress-Strain Curves by Tensile Testing of Thin Metallic Films On Thin Polyimide Foils: Al, AlCu, CuNi(Mn) , 1997 .