Sorption in Proton-Exchange Membranes An Explanation of Schroeder’s Paradox

A physicochemical model is proposed to describe sorption in proton-exchange membranes (PEMs), which can predict the complete isotherm as well as provide a plausible explanation for the long-unresolved phenomenon termed Schroeder's paradox, namely, the difference between the amounts sorbed from a liquid solvent vs. from its saturated vapor. The solvent uptake is governed by the swelling pressure caused within the membrane as a result of stretching of the polymer chains upon solvent uptake, Π M , as well as a surface pressure, Π σ , due to the curved vapor-liquid interface of pore liquid. Further, the solvent molecules in the membrane are divided into those that are chemically, or strongly, bound to the acid sites, λ C i, and others that are free to physically equilibrate between the fluid and the membrane phases, λ F i. The model predicts the isotherm over the whole range of humidities satisfactorily and also provides a rational explanation for the Schroeder's paradox.

[1]  S. Pispas,et al.  Smart Polymer Surfaces , 2003 .

[2]  Charles Stone,et al.  From curiosity to “power to change the world®” , 2002 .

[3]  T. Fuller,et al.  A Historical Perspective of Fuel Cell Technology in the 20th Century , 2002 .

[4]  R. Datta,et al.  Monolayer hydration governs nonideality in osmotic pressure of protein solutions , 2002 .

[5]  V. I. Krupyanko Chemical principles: the quest for insight , 2002 .

[6]  S. Srinivasan,et al.  Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects , 2001 .

[7]  P. Pissis,et al.  Water sorption and dielectric relaxation spectroscopy studies in hydrated Nafion® (-SO3K) membranes , 2000 .

[8]  J. Newman,et al.  Equilibrium and diffusion of methanol and water in a nafion 117 membrane , 2000 .

[9]  R. Datta,et al.  Modeling of Conductive Transport in Proton-Exchange Membranes for Fuel Cells , 2000 .

[10]  S. R. Coulson,et al.  Super-Repellent Composite Fluoropolymer Surfaces , 2000 .

[11]  B. B. Sauer,et al.  High-Resolution Imaging of Ionic Domains and Crystal Morphology in Ionomers Using AFM Techniques , 2000 .

[12]  G. Gebel,et al.  Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution , 2000 .

[13]  Mervyn J Miles,et al.  In situ rehydration of perfluorosulphonate ion-exchange membrane studied by AFM , 2000 .

[14]  Aleksey Vishnyakov and,et al.  Molecular Simulation Study of Nafion Membrane Solvation in Water and Methanol , 2000 .

[15]  Stephen J. Paddison,et al.  A statistical mechanical model of proton and water transport in a proton exchange membrane , 2000 .

[16]  J. Wisniak,et al.  Measurement of sorption in hydrophilic pervaporation: sorption modes and consistency of the data , 2000 .

[17]  I-Ming Hsing,et al.  Thermodynamics of water vapor uptake in perfluorosulfonic acid membranes , 1999 .

[18]  M. Eikerling,et al.  A Study of Capillary Porous Structure and Sorption Properties of Nafion Proton‐Exchange Membranes Swollen in Water , 1998 .

[19]  P. Kauranen,et al.  Water and methanol uptake in proton conducting Nafion® membranes , 1997 .

[20]  G. Spoto,et al.  Interaction of H2O, CH3OH, (CH3)2O, CH3CN, and Pyridine with the Superacid Perfluorosulfonic Membrane Nafion: An IR and Raman Study , 1995 .

[21]  Ze'ev Porat,et al.  Electron Microscopy Investigation of the Microstructure of Nafion Films , 1995 .

[22]  J. Hinatsu,et al.  Water Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water Vapor , 1994 .

[23]  C. Tanford Macromolecules , 1994, Nature.

[24]  Xiaodong Sun,et al.  Water-sorption and transport properties of Nafion 117 H , 1993 .

[25]  T. Springer,et al.  A Comparative Study of Water Uptake By and Transport Through Ionomeric Fuel Cell Membranes , 1993 .

[26]  T. Springer,et al.  Water Uptake by and Transport Through Nafion® 117 Membranes , 1993 .

[27]  P. Taylor,et al.  Physical chemistry of surfaces , 1991 .

[28]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[29]  A. Oikonomou,et al.  Influence of the water content on the kinetics of counter-ion transport in perfluorosulphonic membranes , 1990 .

[30]  R. Huggins Solid State Ionics , 1989 .

[31]  K. Mauritz,et al.  A water sorption isotherm model for ionomer membranes with cluster morphologies , 1985 .

[32]  F. C. Wilson,et al.  The morphology in nafion† perfluorinated membrane products, as determined by wide- and small-angle x-ray studies , 1981 .

[33]  S. Lowry,et al.  An investigation of ionic hydration effects in perfluorosulfonate ionomers by Fourier transform infrared spectroscopy , 1980 .

[34]  H. Yeager,et al.  Water sorption and cation-exchange selectivity of a perfluorosulfonate ion-exchange polymer , 1980 .

[35]  A. Eisenberg,et al.  Physical properties and supermolecular structure of perfluorinated ion‐containing (nafion) polymers , 1977 .

[36]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[37]  M. Arshadi,et al.  Solvation of the hydrogen ion by water molecules in the gas phase. Heats and entropies of solvation of individual reactions. H+(H2O)n-1 + H2O .fwdarw. H+(H2O)n , 1967 .

[38]  R. E. Pattle,et al.  The swelling of rubber in liquid and vapour (schroeder's paradox) , 1966 .

[39]  E. Glueckauf,et al.  A theoretical treatment of cation exchangers - III. The hydration of cations in polystyrene sulphonates , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[40]  H. Gregor Gibbs-Donnan Equilibria in Ion Exchange Resin Systems , 1951 .

[41]  Gregor,et al.  A GENERAL THERMODYNAMIC THEORY OF ION EXCHANGE PROCESSES. TECHNICAL REPORT ON ION EXCHANGE PROJECT , 1948 .

[42]  W. G. McMillan,et al.  The Statistical Thermodynamics of Multicomponent Systems , 1945 .

[43]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .

[44]  H. Holmes Colloid and Capillary Chemistry , 1927 .

[45]  M. M. Haring Colloid and Capillary Chemistry (Freundlich, Herbert) , 1926 .

[46]  J. Frazer,et al.  THE OSMOTIC PRESSURE OF SUCROSE SOLUTIONS AT 30°.1 , 1916 .

[47]  P. Gibson,et al.  Solubility and transport behavior of water and alcohols in Nafion , 2001 .

[48]  C. Gardner,et al.  Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion® , 1996 .

[49]  A. Ravve,et al.  Principles of Polymer Chemistry , 1995 .

[50]  T. Zawodzinski,et al.  The contact angle between water and the surface of perfluorosulphonic acid membranes , 1993 .

[51]  R. Iyer,et al.  Thermodynamics of water sorption by perfluorosulphonate (Nafion-117) and polystyrene–divinylbenzene sulphonate (Dowex 50W) ion-exchange resins at 298 ± 1 K , 1988 .

[52]  H. Mark,et al.  Encyclopedia of polymer science and engineering , 1985 .

[53]  T. Gierke,et al.  Elastic theory for ionic clustering in perfluorinated ionomers , 1982 .

[54]  M. Liler Reaction mechanisms in sulphuric acid and other strong acid solutions , 1971 .

[55]  R. P. Bell,et al.  Modern Electrochemistry , 1966, Nature.

[56]  R. M. Barrer,et al.  321. The adsorption method of measuring surface areas , 1952 .

[57]  P. Stamberger The Colloid Chemistry of Rubber , 1930, Nature.

[58]  J. Reilly,et al.  Physico-Chemical Methods , 1926, Nature.

[59]  W. Bancroft The Action of Water Vapor on Gelatine , 1911 .

[60]  M. Muir Physical Chemistry , 1888, Nature.