On the global existence for a fluid-structure model with small data

We address the system of partial differential equations modeling motion of an elastic body interacting with an incompressible fluid. The fluid is modeled by the incompressible Navier-Stokes equations while the structure is represented by a damped wave equation with no added stabilization terms. We prove global existence and exponential decay of strong solutions for small initial data in a suitable Sobolev space. The elastic displacement is controlled using a new almost divergence-free corrector in the fluid domain. Our approach allows for any superlinear perturbation of the wave equation. Mathematics Subject Classification: 35R35, 35Q30, 76D05

[1]  M. Boulakia Existence of Weak Solutions for the Three-Dimensional Motion of an Elastic Structure in an Incompressible Fluid , 2007 .

[2]  Igor Kukavica,et al.  SOLUTIONS TO A FLUID-STRUCTURE INTERACTION FREE BOUNDARY PROBLEM , 2011 .

[3]  M. E. Bogovskii Solution of the first boundary value problem for the equation of continuity of an incompressible medium , 1979 .

[4]  J. Zolésio,et al.  Sensitivity analysis for a free boundary fluid-elasticity interaction , 2013 .

[5]  Giovanni P. Galdi,et al.  An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .

[6]  Daniel Coutand,et al.  The Interaction between Quasilinear Elastodynamics and the Navier-Stokes Equations , 2006 .

[7]  oris,et al.  Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible , viscous fluid in a cylinder with deformable walls , 2012 .

[8]  I. Lasiecka,et al.  Small data global existence for a fluid-structure model , 2017 .

[9]  I. Kukavica,et al.  Regularity of Solutions to a Free Boundary Problem of Fluid Structure Interaction , 2013 .

[10]  Irena Lasiecka,et al.  Higher Regularity of a Coupled Parabolic-Hyperbolic Fluid-Structure Interactive System , 2008 .

[11]  Takéo Takahashi,et al.  Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure , 2019, Nonlinearity.

[12]  M. Vanninathan,et al.  A fluid–structure model coupling the Navier–Stokes equations and the Lamé system , 2014 .

[13]  M. Boulakia,et al.  A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations , 2009 .

[14]  S. Čanić,et al.  Existence of a weak solution to a fluid-elastic structure interaction problem with the Navier slip boundary condition , 2015, 1505.04462.

[15]  Amjad Tuffaha,et al.  Smoothness of weak solutions to a nonlinear fluid-structure interaction model , 2008 .

[16]  Céline Grandmont,et al.  Weak solutions for a fluid-elastic structure interaction model , 2001 .

[17]  Daniel Coutand,et al.  Motion of an Elastic Solid inside an Incompressible Viscous Fluid , 2005 .

[18]  Igor Kukavica,et al.  On well-posedness and small data global existence for an interface damped free boundary fluid–structure model , 2014 .

[19]  Igor Kukavica,et al.  On well-posedness for a free boundary fluid-structure model , 2012 .

[20]  Roland Glowinski,et al.  Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow , 2009, J. Comput. Phys..

[21]  Igor Kukavica,et al.  Well-posedness for the compressible Navier–Stokes–Lamé system with a free interface , 2012 .

[22]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[23]  L. Hou,et al.  ANALYSIS OF A LINEAR FLUID-STRUCTURE INTERACTION PROBLEM , 2003 .

[24]  M. Boulakia,et al.  Regular solutions of a problem coupling a compressible fluid and an elastic structure , 2010 .

[25]  S. Shkoller,et al.  The Interaction between Quasilinear Elastodynamics and the , 2006 .