Light clusters production as a probe to nuclear symmetry energy

Using an isospin-dependent transport model for heavy-ion collisions induced by neutron-rich nuclei at intermediate energies, we study the production of light clusters such as deuteron, triton, and $^{3}$He via coalescence of nucleons. We find that both the yields and energy spectra of these light clusters are affected significantly by the density dependence of nuclear symmetry energy, with a stiffer symmetry energy giving a larger yield.

[1]  V. Greco,et al.  Effects of symmetry energy on two-nucleon correlation functions in heavy-ion collisions induced by neutron-rich nuclei. , 2002, Physical review letters.

[2]  Bao-An Li High density behaviour of nuclear symmetry energy and high energy heavy-ion collisions , 2002, nucl-th/0206053.

[3]  Bao-An Li Probing the high density behavior of the nuclear symmetry energy with high energy heavy-ion collisions. , 2002, Physical review letters.

[4]  R. Furnstahl Neutron radii in mean field models , 2001, nucl-th/0112085.

[5]  Bin Zhang,et al.  Proton differential elliptic flow and the isospin dependence of the nuclear equation of state , 2001, nucl-th/0108047.

[6]  R. Donangelo,et al.  Fragment isotope distributions and the isospin dependent equation of state , 2001, nucl-ex/0104017.

[7]  H. Xu,et al.  Isotopic scaling in nuclear reactions. , 2001, Physical review letters.

[8]  C. Horowitz,et al.  Neutron star structure and the neutron radius of 208Pb. , 2000, Physical review letters.

[9]  J. Lattimer,et al.  Neutron Star Structure and the Equation of State , 2000, astro-ph/0002232.

[10]  S. Pollock,et al.  PARITY VIOLATING MEASUREMENTS OF NEUTRON DENSITIES , 1999, nucl-th/9912038.

[11]  B. A. Brown,et al.  Neutron radii in nuclei and the neutron equation of state. , 2000, Physical review letters.

[12]  P. Buchet,et al.  Prompt light particle emission in the 36Ar + 58Ni reaction at 95 MeV/nucleon , 2000 .

[13]  Li Neutron-proton differential flow as a probe of isospin-dependence of the nuclear equation of state , 2000, Physical review letters.

[14]  T. Keutgen,et al.  Light particle probes of expansion and temperature evolution: Coalescence model analyses of heavy ion collisions at 47A MeV , 2000 .

[15]  R. Laforest,et al.  Isospin dependence of isobaric ratio Y( 3( H)/Y( 3 He) and its relation to temperature , 2000, nucl-ex/0003004.

[16]  M. Lunardon,et al.  Dynamic evolution and the caloric curve for medium mass nuclei , 2000 .

[17]  Wagner,et al.  Isospin fractionation in nuclear multifragmentation , 1999, Physical review letters.

[18]  H. Heiselberg,et al.  PHASES OF DENSE MATTER IN NEUTRON STARS , 1999, astro-ph/9910200.

[19]  I. Mishustin,et al.  Reconstruction of the proton source in relativistic heavy ion collisions , 1999, nucl-th/9907066.

[20]  Bao-An Li,et al.  DIFFERENTIAL FLOW IN HEAVY-ION COLLISIONS AT BALANCE ENERGIES , 1999, nucl-th/9905038.

[21]  P. Chomaz,et al.  Phase transition in an isospin dependent Lattice Gas Model , 1999 .

[22]  H. Toki,et al.  Can the equation of state of asymmetric nuclear matter be studied using unstable nuclei , 1998 .

[23]  M. Colonna,et al.  Spinodal decomposition of low-density asymmetric nuclear matter , 1998, 0705.1291.

[24]  C. Ko,et al.  Isospin Physics in Heavy-Ion Collisions at Intermediate Energies , 1997, nucl-th/9707014.

[25]  C. Ko,et al.  Chemical and mechanical instability in hot isospin-asymmetric nuclear matter , 1997, nucl-th/9701049.

[26]  Z. Ren,et al.  Equation of State of Asymmetric Nuclear Matter and Collisions of Neutron-Rich Nuclei , 1997, nucl-th/9701048.

[27]  W. Greiner,et al.  Nuclear clusters as a probe for expansion flow in heavy ion reactions at (10–15) A GeV , 1996, nucl-th/9607003.

[28]  F. Saint-Laurent,et al.  Kinematical properties and composition of vaporizing sources: is thermodynamical equilibrium achieved? , 1996 .

[29]  Ren,et al.  Isospin dependence of collective flow in heavy-ion collisions at intermediate energies. , 1996, Physical review letters.

[30]  D. Kusnezov,et al.  Coalescence of deuterons in relativistic heavy ion collisions. , 1996, Physical review. C, Nuclear physics.

[31]  Gale,et al.  Momentum-dependent nuclear mean fields and collective flow in heavy-ion collisions. , 1994, Physical review. C, Nuclear physics.

[32]  Machleidt,et al.  Microscopic calculation of in-medium proton-proton cross sections. , 1993, Physical review. C, Nuclear physics.

[33]  Machleidt,et al.  Microscopic calculation of in-medium nucleon-nucleon cross sections. , 1993, Physical review. C, Nuclear physics.

[34]  Pan,et al.  From sideward flow to nuclear compressibility. , 1993, Physical review letters.

[35]  H. A. Bethe,et al.  Supernova mechanisms. [SN 1987a] , 1990 .

[36]  W. Cassing,et al.  Transverse flow of fragments in the relativistic BUU model , 1990 .

[37]  George F. Bertsch,et al.  A guide to microscopic models for intermediate energy heavy ion collisions , 1988 .

[38]  Greiner,et al.  Importance of momentum-dependent interactions for the extraction of the nuclear equation of state from high-energy heavy-ion collisions. , 1987, Physical review letters.

[39]  Tsang,et al.  Fragment production in intermediate energy heavy ion reactions. , 1987, Physical review. C, Nuclear physics.

[40]  Chen,et al.  Faddeev calculations of the 2 pi -3N force contribution to the 3H binding energy. , 1986, Physical review. C, Nuclear physics.

[41]  M. Gyulassy,et al.  Deuteron formation in nuclear collisions , 1983 .

[42]  W. D. Myers,et al.  NUCLEAR MASSES AND DEFORMATIONS , 1966 .