Recent Developments in Combinatorial Geometry

Over a span of fifty years Paul Erdős has written many articles with this or a similar title. His countless results, which were obtained by the application of combinatorial and counting (random) methods, and the many deep problems raised and popularized in these papers, generated much research in combinatorics and graph theory. They played an important role in the emergence of a number of new areas in mathematics. One of these is combinatorial geometry, the study of extremal problems about finite arrangements of points, lines, circles, etc.

[1]  Zoltán Füredi,et al.  On the number of halving planes , 1989, SCG '89.

[2]  P. Borwein,et al.  A survey of Sylvester's problem and its generalizations , 1990 .

[3]  G. Dirac COLLINEARITY PROPERTIES OF SETS OF POINTS , 1951 .

[4]  Richard Pollack,et al.  On the Number of k-Subsets of a Set of n Points in the Plane , 1984, J. Comb. Theory, Ser. A.

[5]  Peter Frankl,et al.  Embedding the n-cube in Lower Dimensions , 1986, Eur. J. Comb..

[6]  Hiroshi Maehara Note on induced subgraphs of the unit distance graphEn , 1989, Discret. Comput. Geom..

[7]  Zoltán Füredi,et al.  The grid revisted , 1993, Discret. Math..

[8]  Micha Sharir,et al.  A Hyperplane Incidence Problem with Applications to Counting Distances , 1990, SIGAL International Symposium on Algorithms.

[9]  Peter Braß,et al.  The maximum number of second smallest distances in finite planar sets , 1992, Discret. Comput. Geom..

[10]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[11]  Noga Alon,et al.  The number of small semispaces of a finite set of points in the plane , 1986, J. Comb. Theory, Ser. A.

[12]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[13]  L. Lovász Combinatorial problems and exercises , 1979 .

[14]  Y. C. Verdière,et al.  Empilements de cercles: Convergence d’une méthode de point fixe , 1989 .

[15]  Vojtech Rödl,et al.  Geometrical embeddings of graphs , 1989, Discret. Math..

[16]  Douglas B. West,et al.  The interval number of a planar graph: Three intervals suffice , 1983, J. Comb. Theory, Ser. B.

[17]  Sinisa T. Vrecica,et al.  The Colored Tverberg's Problem and Complexes of Injective Functions , 1992, J. Comb. Theory, Ser. A.

[18]  D. W. Crowe,et al.  Sylvester's Problem on Collinear Points , 1968 .

[19]  P. Gritzmann,et al.  Applied geometry and discrete mathematics : the Victor Klee festschrift , 1991 .

[20]  Noga Alon,et al.  Disjoint edges in geometric graphs , 1989, Discret. Comput. Geom..

[21]  H. T. Croft Some Geometrical Thoughts II , 1967 .

[22]  János Pach,et al.  Weaving Patterns of Lines and Segments in Space , 1990, SIGAL International Symposium on Algorithms.

[23]  G. Purdy Some extremal problems in geometry , 1971 .

[24]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[25]  Leonidas J. Guibas,et al.  Points and triangles in the plane and halving planes in space , 1991, Discret. Comput. Geom..

[26]  Vasilis Capoyleas,et al.  A turán-type theorem on chords of a convex polygon , 1992, J. Comb. Theory, Ser. B.

[27]  Leonidas J. Guibas,et al.  Counting and cutting cycles of lines and rods in space , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[28]  Hiroshi Maehara Contact patterns of equal nonoverlapping spheres , 1985, Graphs Comb..

[29]  Hiroshi Maehara,et al.  Space graphs and sphericity , 1984, Discret. Appl. Math..

[30]  B. Grünbaum On steinitz’s theorem about non-inscribable polyhedra , 1963 .

[31]  P. ERDijS,et al.  ON THE DISTRIBUTION OF VALUES OF ANGLES DETERMINED BY COPLANAR POINTS , 1979 .

[32]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[33]  K. Vesztergombi,et al.  On large distances in planar sets , 1987, Discret. Math..

[34]  Paul Erdös,et al.  A problem of Leo Moser about repeated distances on the sphere , 1989 .

[35]  Douglas R. Woodall Distances Realized by Sets Covering the Plane , 1973, J. Comb. Theory, Ser. A.

[36]  S. Konyagin Systems of vectors in Euclidean space and an extremal problem for polynomials , 1981 .

[37]  P. Erdös,et al.  Dissection Graphs of Planar Point Sets , 1973 .

[38]  Kenneth L. Clarkson,et al.  Combinatorial complexity bounds for arrangements of curves and surfaces , 2015, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[39]  Moshe Rosenfeld Almost Orthogonal Lines in Ed , 1990, Applied Geometry And Discrete Mathematics.

[40]  Leonidas J. Guibas,et al.  Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..

[41]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[42]  András Gyárfás,et al.  On the chromatic number of multiple interval graphs and overlap graphs , 1985, Discret. Math..

[43]  Zoltán Füredi,et al.  The maximum number of unit distances in a convex n-gon , 1990, J. Comb. Theory, Ser. A.

[44]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[45]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[46]  W. Thurston The geometry and topology of three-manifolds , 1979 .

[47]  Herbert Edelsbrunner,et al.  The number of extreme pairs of finite point-sets in Euclidean spaces , 1986, J. Comb. Theory, Ser. A.

[48]  Paul Erdös,et al.  Gaps in Difference Sets, and the Graph of Nearly Equal Distances , 1990, Applied Geometry And Discrete Mathematics.

[49]  E. Szemerédi,et al.  Unit distances in the Euclidean plane , 1984 .

[50]  W. T. Tutte,et al.  ON THE DIMENSION OF A GRAPH , 1965 .

[51]  Herbert Edelsbrunner,et al.  On the Number of Line Separations of a Finite Set in the Plane , 1985, J. Comb. Theory, Ser. A.

[52]  Mark de Berg,et al.  Finding squares and rectangles in sets of points , 1989, BIT.

[53]  C. Rogers,et al.  The realization of distances within sets in Euclidean space , 1972 .

[54]  Hiroshi Maehara On the sphericity for the join of many graphs , 1984, Discret. Math..

[55]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[56]  Y. C. Verdière Un principe variationnel pour les empilements de cercles , 1991 .

[57]  P. Turán On the theory of graphs , 1954 .

[58]  Frank Harary,et al.  On the euclidean dimension of a wheel , 1988, Graphs Comb..

[59]  N. Wormald A 4-chromatic graph with a special plane drawing , 1979 .

[60]  János Pach,et al.  Some geometric applications of Dilworth’s theorem , 1994, Discret. Comput. Geom..

[61]  J. Reiterman,et al.  Embeddings of graphs in euclidean spaces , 1989, Discret. Comput. Geom..

[62]  Peter Frankl,et al.  On the contact dimensions of graphs , 1988, Discret. Comput. Geom..

[63]  H. Edelsbrunner,et al.  On the number of furthest neighbour pairs in a point set , 1989 .

[64]  Paul Erdös,et al.  Variations on the theme of repeated distances , 1990, Comb..

[65]  P. Erdös,et al.  On the structure of linear graphs , 1946 .

[66]  L. M. Kelly,et al.  A resolution of the sylvester-gallai problem of J.-P. serre , 1986, Discret. Comput. Geom..

[67]  Fred S. Roberts,et al.  Computing the boxicity of a graph by covering its complement by cointerval graphs , 1983, Discret. Appl. Math..

[68]  Sue Whitesides,et al.  Grid intersection graphs and boxicity , 1993, Discret. Math..

[69]  Robin Wilson,et al.  Graph theory and combinatorics , 1979 .

[70]  P. Erdös,et al.  On Some Applications of Graph Theory to Geometry , 1967, Canadian Journal of Mathematics.

[71]  Fan Chung Sphere-and-point incidence relations in high dimensions with applications to unit distances and furthest-neighbor pairs , 1989 .

[72]  Hiroshi Maehara On the euclidean dimension of a complete multipartite graph , 1988, Discret. Math..

[73]  Herbert Edelsbrunner,et al.  A lower bound on the number of unit distances between the vertices of a convex polygon , 1991, J. Comb. Theory, Ser. A.

[74]  P. Erdös On Sets of Distances of n Points , 1946 .

[75]  J. Pach,et al.  An upper bound on the number of planar k-sets , 1989, 30th Annual Symposium on Foundations of Computer Science.

[76]  Paul Erdös,et al.  Repeated distances in space , 1988, Graphs Comb..

[77]  Katalin Vesztergombi,et al.  On the distribution of distances in finite sets in the plane , 1985, Discret. Math..

[78]  Yakov Shimeon Kupitz On Pairs of Disjoint Segments in Convex Position in The Plane , 1984 .

[79]  Frank Harary,et al.  On double and multiple interval graphs , 1979, J. Graph Theory.

[80]  N. Alon,et al.  Disjoint Simplices and Geometric Hypergraphs , 1989 .

[81]  J. Pach Decomposition of multiple packing and covering , 1980 .

[82]  József Beck,et al.  On the lattice property of the plane and some problems of Dirac, Motzkin and Erdős in combinatorial geometry , 1983, Comb..

[83]  Micha Sharir,et al.  Repeated Angles in the Plane and Related Problems , 1992, J. Comb. Theory, Ser. A.

[84]  Ernst Steinitz Über isoperimetrische Probleme bei konvexen Polyedern. , 1927 .

[85]  Noga Alon,et al.  Separating Pairs of Points by Standard Boxes , 1985, Eur. J. Comb..

[86]  W. Moser,et al.  On the Number of Ordinary Lines Determined by n Points , 1958, Canadian Journal of Mathematics.

[87]  Fan Chung,et al.  The number of different distances determined by n points in the plane , 1984 .

[88]  Endre Szemerédi,et al.  The number of different distances determined by a set of points in the Euclidean plane , 1992, Discret. Comput. Geom..

[89]  Peter Frankl,et al.  The Johnson-Lindenstrauss lemma and the sphericity of some graphs , 1987, J. Comb. Theory B.