Numerical evaluation of Hankel transforms for oscillating functions.
暂无分享,去创建一个
[1] Q. Liu,et al. An accurate algorithm for nonuniform fast Fourier transforms (NUFFT's) , 1998 .
[2] É. Thiébaut,et al. Strict a priori constraints for maximum-likelihood blind deconvolution , 1995 .
[3] Qinrong Yu,et al. Parametric blind deconvolution of fluorescence microscopy images: preliminary results , 1996, Electronic Imaging.
[4] A. Oppenheim,et al. Computation of the Hankel transform using projections , 1980 .
[5] Richard G. Lane,et al. Blind deconvolution of speckle images , 1992 .
[6] J N Turner,et al. Blind deconvolution of fluorescence micrographs by maximum-likelihood estimation. , 1995, Applied optics.
[7] Eric W. Hansen,et al. Recursive methods for computing the Abel transform and its inverse , 1985 .
[8] Antoniangelo Agnesi,et al. Numerical evaluation of the Hankel transform: remarks , 1993 .
[9] Bruce W. Suter,et al. Fast Nth-order Hankel transform algorithm , 1991, IEEE Trans. Signal Process..
[10] J. Conchello,et al. Parametric blind deconvolution: a robust method for the simultaneous estimation of image and blur. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.
[11] James R. Fienup,et al. Joint estimation of object and aberrations by using phase diversity , 1992 .
[12] D. Mook,et al. An algorithm for the numerical evaluation of the Hankel and Abel transforms , 1983 .
[13] Eric W. Hansen,et al. Fast Hankel transform algorithm , 1985, IEEE Trans. Acoust. Speech Signal Process..
[14] José A. Ferrari. Fast Hankel transform of order zero , 1995 .
[15] James N. Turner,et al. ML-blind deconvolution algorithm: recent developments , 1996, Electronic Imaging.
[16] A. Siegman. Quasi fast Hankel transform. , 1977, Optics letters.
[17] R. Barakat,et al. Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy , 1996 .
[18] Jose-Angel Conchello,et al. Parametric blind deconvolution of microscopic images: further results , 1998, Photonics West - Biomedical Optics.
[19] S. Gibson,et al. Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. , 1991, Journal of the Optical Society of America. A, Optics and image science.
[20] E. Hansen. Correction to "Fast Hankel transform algorithm" , 1986 .
[21] Luc Knockaert,et al. Fast Hankel transform by fast sine and cosine transforms: the Mellin connection , 2000, IEEE Trans. Signal Process..
[22] Qing Huo Liu,et al. Iterative algorithm for nonuniform inverse fast Fourier transform (NU-IFFT) , 1998 .
[23] Q H Liu,et al. Nonuniform fast Hankel transform (NUFHT) algorithm. , 1999, Applied optics.
[24] A. Oppenheim,et al. An algorithm for the numerical evaluation of the Hankel transform , 1978, Proceedings of the IEEE.
[25] Alfredo Dubra,et al. Fast Hankel transform of nth order , 1999 .
[26] Timothy J. Schulz,et al. Multiframe blind deconvolution of astronomical images , 1993 .
[27] Philip J. Bones,et al. Algorithms to numerically evaluate the Hankel transform , 1993 .
[28] Richard Barakat,et al. Zero-order Hankel transformation algorithms based on Filon quadrature philosophy for diffraction optics and beam propagation , 1998 .
[29] T J Holmes,et al. Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach. , 1992, Journal of the Optical Society of America. A, Optics and image science.
[30] Bruce W. Suter,et al. Foundations of Hankel transform algorithms , 1991 .
[31] Robert A. Hedges,et al. Understanding fast Hankel transforms , 2001 .
[32] Nikolas P. Galatsanos,et al. Projection-based blind deconvolution , 1994 .
[33] Sandro De Silvestri,et al. High-accuracy fast Hankel transform for optical beam propagation , 1992 .