Numerical evaluation of Hankel transforms for oscillating functions.

Six methods for the numerical calculation of zero-order Hankel transforms of oscillating functions were evaluated. One method based on Filon quadrature philosophy, two published projection-slice methods, and a third projection-slice method based on a new approach to computation of the Abel transform were implemented; alternative versions of two of the projection-slice methods were derived for more accurate approximations in the projection step. These six algorithms were tested with an oscillating sweep signal and with the calculation of a three-dimensional diffraction-limited point-spread function of a fluorescence microscope. We found that the Filon quadrature method is highly accurate but also computationally demanding. The projection-slice methods, in particular the new one that we derived, offer an excellent compromise between accuracy and computational efficiency.

[1]  Q. Liu,et al.  An accurate algorithm for nonuniform fast Fourier transforms (NUFFT's) , 1998 .

[2]  É. Thiébaut,et al.  Strict a priori constraints for maximum-likelihood blind deconvolution , 1995 .

[3]  Qinrong Yu,et al.  Parametric blind deconvolution of fluorescence microscopy images: preliminary results , 1996, Electronic Imaging.

[4]  A. Oppenheim,et al.  Computation of the Hankel transform using projections , 1980 .

[5]  Richard G. Lane,et al.  Blind deconvolution of speckle images , 1992 .

[6]  J N Turner,et al.  Blind deconvolution of fluorescence micrographs by maximum-likelihood estimation. , 1995, Applied optics.

[7]  Eric W. Hansen,et al.  Recursive methods for computing the Abel transform and its inverse , 1985 .

[8]  Antoniangelo Agnesi,et al.  Numerical evaluation of the Hankel transform: remarks , 1993 .

[9]  Bruce W. Suter,et al.  Fast Nth-order Hankel transform algorithm , 1991, IEEE Trans. Signal Process..

[10]  J. Conchello,et al.  Parametric blind deconvolution: a robust method for the simultaneous estimation of image and blur. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  James R. Fienup,et al.  Joint estimation of object and aberrations by using phase diversity , 1992 .

[12]  D. Mook,et al.  An algorithm for the numerical evaluation of the Hankel and Abel transforms , 1983 .

[13]  Eric W. Hansen,et al.  Fast Hankel transform algorithm , 1985, IEEE Trans. Acoust. Speech Signal Process..

[14]  José A. Ferrari Fast Hankel transform of order zero , 1995 .

[15]  James N. Turner,et al.  ML-blind deconvolution algorithm: recent developments , 1996, Electronic Imaging.

[16]  A. Siegman Quasi fast Hankel transform. , 1977, Optics letters.

[17]  R. Barakat,et al.  Numerical evaluation of the zero-order Hankel transform using Filon quadrature philosophy , 1996 .

[18]  Jose-Angel Conchello,et al.  Parametric blind deconvolution of microscopic images: further results , 1998, Photonics West - Biomedical Optics.

[19]  S. Gibson,et al.  Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[20]  E. Hansen Correction to "Fast Hankel transform algorithm" , 1986 .

[21]  Luc Knockaert,et al.  Fast Hankel transform by fast sine and cosine transforms: the Mellin connection , 2000, IEEE Trans. Signal Process..

[22]  Qing Huo Liu,et al.  Iterative algorithm for nonuniform inverse fast Fourier transform (NU-IFFT) , 1998 .

[23]  Q H Liu,et al.  Nonuniform fast Hankel transform (NUFHT) algorithm. , 1999, Applied optics.

[24]  A. Oppenheim,et al.  An algorithm for the numerical evaluation of the Hankel transform , 1978, Proceedings of the IEEE.

[25]  Alfredo Dubra,et al.  Fast Hankel transform of nth order , 1999 .

[26]  Timothy J. Schulz,et al.  Multiframe blind deconvolution of astronomical images , 1993 .

[27]  Philip J. Bones,et al.  Algorithms to numerically evaluate the Hankel transform , 1993 .

[28]  Richard Barakat,et al.  Zero-order Hankel transformation algorithms based on Filon quadrature philosophy for diffraction optics and beam propagation , 1998 .

[29]  T J Holmes,et al.  Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[30]  Bruce W. Suter,et al.  Foundations of Hankel transform algorithms , 1991 .

[31]  Robert A. Hedges,et al.  Understanding fast Hankel transforms , 2001 .

[32]  Nikolas P. Galatsanos,et al.  Projection-based blind deconvolution , 1994 .

[33]  Sandro De Silvestri,et al.  High-accuracy fast Hankel transform for optical beam propagation , 1992 .