Colour coding in the primate retina: diverse cell types and cone-specific circuitry

[1]  S. Schein,et al.  Inner S‐cone bipolar cells provide all of the central elements for S cones in macaque retina , 2003, The Journal of comparative neurology.

[2]  Paul D. Gamlin,et al.  Fireworks in the Primate Retina In Vitro Photodynamics Reveals Diverse LGN-Projecting Ganglion Cell Types , 2003, Neuron.

[3]  J. L. Schnapf,et al.  Feedback from Horizontal Cells to Cones in the Primate Retina , 2002 .

[4]  D. Dacey,et al.  Identification of an S-cone Opponent OFF Pathway in the Macaque Monkey Retina: Morphology, Physiology and Possible Circuitry , 2002 .

[5]  David Williams,et al.  Color Perception Is Mediated by a Plastic Neural Mechanism that Is Adjustable in Adults , 2002, Neuron.

[6]  R. Shapley,et al.  Space and Time Maps of Cone Photoreceptor Signals in Macaque Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[7]  D. Dacey,et al.  Receptive field structure of H1 horizontal cells in macaque monkey retina. , 2002, Journal of vision.

[8]  P. Lennie,et al.  Packing arrangement of the three cone classes in primate retina , 2001, Vision Research.

[9]  David J. Calkins,et al.  Seeing with S cones , 2001, Progress in Retinal and Eye Research.

[10]  Paul R. Martin,et al.  Chromatic sensitivity of ganglion cells in the peripheral primate retina , 2001, Nature.

[11]  Bevil R. Conway,et al.  Spatial Structure of Cone Inputs to Color Cells in Alert Macaque Primary Visual Cortex (V-1) , 2001, The Journal of Neuroscience.

[12]  R. Shapley,et al.  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001, Nature Neuroscience.

[13]  P. Lennie,et al.  Color vision: Putting it together , 2000, Current Biology.

[14]  R. L. Valois,et al.  Some transformations of color information from lateral geniculate nucleus to striate cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Verweij,et al.  Physiology of L- and M-cone inputs to H1 horizontal cells in the primate retina. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  K. D. De Valois,et al.  Contribution of S opponent cells to color appearance. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  David J. Calkins,et al.  Evidence that Circuits for Spatial and Color Vision Segregate at the First Retinal Synapse , 1999, Neuron.

[18]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[19]  R. L. Valois,et al.  Temporal dynamics of chromatic tuning in macaque primary visual cortex , 1998, Nature.

[20]  David J. Calkins,et al.  Microcircuitry and Mosaic of a Blue–Yellow Ganglion Cell in the Primate Retina , 1998, The Journal of Neuroscience.

[21]  B. B. Lee,et al.  Receptive fields of primate retinal ganglion cells studied with a novel technique , 1998, Visual Neuroscience.

[22]  R. L. Valois,et al.  Hue Scaling of Isoluminant and Cone-specific Lights , 1997, Vision Research.

[23]  K. Mullen,et al.  Losses in Peripheral Colour Sensitivity Predicted from “Hit and Miss” Post-receptoral Cone Connections , 1996, Vision Research.

[24]  David J. Calkins,et al.  Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina , 1996, Nature.

[25]  R. Vautin,et al.  Neuronal mechanisms of color categorization in areas V1, V2 and V4 of macaque monkey visual cortex , 1996, Behavioural Brain Research.

[26]  Barry B. Lee,et al.  Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency , 1996, Science.

[27]  David J. Calkins,et al.  M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses , 1994, Nature.

[28]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[29]  D. Dacey The mosaic of midget ganglion cells in the human retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[31]  K. Mullen,et al.  Colour vision as a post-receptoral specialization of the central visual field , 1991, Vision Research.

[32]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[33]  H. Kolb,et al.  Midget ganglion cells of the parafovea of the human retina: A Study by electron microscopy and serial section reconstructions , 1991, The Journal of comparative neurology.

[34]  D. Baylor,et al.  Spectral sensitivity of cones of the monkey Macaca fascicularis. , 1987, The Journal of physiology.

[35]  Barry B. Lee,et al.  Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus , 1986, Vision Research.

[36]  W. Paulus,et al.  A new concept of retinal colour coding , 1983, Vision Research.

[37]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[38]  D. Dacey Parallel pathways for spectral coding in primate retina. , 2000, Annual review of neuroscience.

[39]  P. Romano Association for Research in Vision and Ophthalmology. , 2000, Binocular vision & strabismus quarterly.

[40]  Karl R. Gegenfurtner,et al.  Color Vision: From Genes to Perception , 1999 .

[41]  I Abramov,et al.  Color appearance: on seeing red--or yellow, or green, or blue. , 1994, Annual review of psychology.

[42]  David R. Williams,et al.  The design of chromatically opponent receptive fields , 1991 .

[43]  P. Lennie,et al.  Mechanisms of color vision. , 1988, Critical reviews in neurobiology.