High-order computation of burning propellant surface and simulation of fluid flow in solid rocket chamber

In this paper, we present a numerical approach for predicting fluid flows in solid rocket motor (SRM) chambers. We use a novel high-order technique to track the burning grain surface. Spectral convergence toward the exact burning surface is achieved thanks to Fourier differentiation. In addition, we make use of a body-fitted mesh deforming with the burning surface and present a method to avoid manual remeshing. We describe several methods to deform the volume mesh and to keep good mesh element quality during the computation. We then couple the surface and volume approaches. The resulting coupled method is able to handle the formation of geometric singularities on the burning surface while keeping constant surface and volume mesh topology. This geometrical approach is integrated into a complex code for compressible, multi-species, turbulent flow simulations. Applications to the simulation of the internal flow in realistic solid rocket motors with complex grain geometry are then presented.

[1]  Y. Hwang,et al.  Simple Surface-Tracking Methods for Grain Burnback Analysis , 2015 .

[2]  Hongkai Zhao,et al.  A cell based particle method for modeling dynamic interfaces , 2014, J. Comput. Phys..

[3]  D. Gueyffier,et al.  Numerical Simulation of Ionized Rocket Plumes , 2014 .

[4]  Frédéric Alauzet,et al.  A changing-topology moving mesh technique for large displacements , 2013, Engineering with Computers.

[5]  J. Estivalezes,et al.  Stability analysis and numerical simulation of simplified solid rocket motors , 2013 .

[6]  Ali Kamran,et al.  ±3-Sigma based design optimization of 3D Finocyl grain , 2013 .

[7]  Marc Massot,et al.  Eulerian multi-fluid models for the simulation of dynamics and coalescence of particles in solid propellant combustion , 2013, J. Comput. Phys..

[8]  Frédéric Alauzet,et al.  Efficient Moving Mesh Technique Using Generalized Swapping , 2012, IMR.

[9]  Grégoire Casalis,et al.  On the importance of reduced scale Ariane 5 P230 solid rocket motor models in the comprehension and prevention of thrust oscillations , 2011 .

[10]  George Biros,et al.  A fast algorithm for simulating vesicle flows in three dimensions , 2011, J. Comput. Phys..

[11]  Liang Guozhu,et al.  Design and Optimization of 3D Radial Slot Grain Configuration , 2010 .

[12]  George Biros,et al.  A numerical method for simulating the dynamics of 3D axisymmetric vesicles suspended in viscous flows , 2009, J. Comput. Phys..

[13]  George Biros,et al.  A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D , 2009, J. Comput. Phys..

[14]  F. Vuillot,et al.  Numerical Simulations Of A Model Solid Rocket Motor Ignition Overpressure Wave , 2008 .

[15]  I. Dubois,et al.  Multi-Phase Reactive Numerical Simulations of a Model Solid Rocket Exhaust Jet , 2006 .

[16]  Liu Peijin,et al.  Algorithm Study on Burning Surface Calculation of Solid Rocket Motor with Complicated Grain Based on Level Set Methods , 2006 .

[17]  Michael A. Willcox,et al.  Solid Propellant Grain Design and Burnback Simulation Using a Minimum Distance Function , 2005 .

[18]  Haluk Aksel,et al.  Numerical Simulation of the Grain Burnback in Solid Propellant Rocket Motor , 2005 .

[19]  J. Gottlieb,et al.  Parallel AMR Scheme for Turbulent Multi-Phase Rocket Motor Core Flows , 2005 .

[20]  Rhonald M. Jenkins,et al.  Analytical Methods for Predicting Grain Regression in Tactical Solid-Rocket Motors , 2004 .

[21]  T. Jackson,et al.  Numerical simulation of heterogeneous propellant combustion by a level set method , 2004 .

[22]  Ron Kimmel,et al.  Numerical Geometry of Images , 2003, Springer New York.

[23]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[24]  Ron Kimmel,et al.  Numerical geometry of images - theory, algorithms, and applications , 2003 .

[25]  Roy J. Hartfield,et al.  A Review of Analytical Methods for Solid Rocket Motor Grain Analysis , 2003 .

[26]  G. Rodrigue,et al.  A generalized front marching algorithm for the solution of the eikonal equation , 2003 .

[27]  Francois Vuillot,et al.  Instabilities and pressure oscillations in solid rocket motors , 2003 .

[28]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[29]  Dominique Ribereau,et al.  A Software for SRM Grain Design and Internal Ballistics Evaluation, PIBAL , 2002 .

[30]  Björn Engquist,et al.  High-Frequency Wave Propagation by the Segment Projection Method , 2002 .

[31]  Joel Dupays,et al.  Numerical Simulations of the Unsteady Flow inside Segmented Solid-Propellant Motors with Burning Aluminum Particles. , 2002 .

[32]  Rémi Abgrall,et al.  High Order Numerical Discretization for Hamilton–Jacobi Equations on Triangular Meshes , 2000, J. Sci. Comput..

[33]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[34]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[35]  Jean-David Benamou,et al.  Big Ray Tracing , 1996 .

[36]  Joël Dupays,et al.  Contribution à l'étude du rôle de la phase condensée dans la stabilité d'un propulseur à propergol solide pour lanceur spatial , 1996 .

[37]  François Vuillot,et al.  Vortex-Shedding Phenomena in Solid Rocket Motors , 1995 .

[38]  T. Hou,et al.  Removing the stiffness from interfacial flows with surface tension , 1994 .

[39]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[40]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[41]  H. Seifert,et al.  Rocket Propulsion Elements , 1963 .