Structure-based protein-protein interaction networks and drug design

AbstractProteins carry out their functions by interacting with other proteins and small molecules, forming a complex interaction network. In this review, we briefly introduce classical graph theory based protein-protein interaction networks. We also describe the commonly used experimental methods to construct these networks, and the insights that can be gained from these networks. We then discuss the recent transition from graph theory based networks to structure based protein-protein interaction networks and the advantages of the latter over the former, using two networks as examples. We further discuss the usefulness of structure based protein-protein interaction networks for drug discovery, with a special emphasis on drug repositioning.

[1]  A. Barabasi,et al.  Functional and topological characterization of protein interaction networks , 2004, Proteomics.

[2]  J. J. Walsh,et al.  Tubulin-targeting agents in hybrid drugs. , 2010, Current medicinal chemistry.

[3]  David Warde-Farley,et al.  Dynamic modularity in protein interaction networks predicts breast cancer outcome , 2009, Nature Biotechnology.

[4]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[5]  M. Vidal,et al.  Literature-curated protein interaction , 2009 .

[6]  M. Eisenstein,et al.  Peptide inhibitors targeting protein kinases. , 2009, Current pharmaceutical design.

[7]  Rohita Sinha,et al.  Docking by structural similarity at protein‐protein interfaces , 2010, Proteins.

[8]  T. Herrmann,et al.  Advances in automated NMR protein structure determination , 2011, Quarterly Reviews of Biophysics.

[9]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[10]  D. Levitt,et al.  POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. , 1992, Journal of molecular graphics.

[11]  Jing Yang,et al.  The human disease network in terms of dysfunctional regulatory mechanisms , 2015, Biology Direct.

[12]  Ruth Nussinov,et al.  PatchDock and SymmDock: servers for rigid and symmetric docking , 2005, Nucleic Acids Res..

[13]  Ioannis Xenarios,et al.  DIP: The Database of Interacting Proteins: 2001 update , 2001, Nucleic Acids Res..

[14]  Gerhard Klebe,et al.  An old target revisited: two new privileged skeletons and an unexpected binding mode for HIV-protease inhibitors. , 2005, Angewandte Chemie.

[15]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[16]  Michael J. E. Sternberg,et al.  The 4th meeting on the Critical Assessment of Predicted Interaction (CAPRI) held at the Mare Nostrum, Barcelona , 2010 .

[17]  V. Helms,et al.  Transient pockets on protein surfaces involved in protein-protein interaction. , 2007, Journal of medicinal chemistry.

[18]  R. Sharan,et al.  A systems-level approach to mapping the telomere length maintenance gene circuitry , 2008, Molecular systems biology.

[19]  R. Nussinov,et al.  Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM , 2011, Nature Protocols.

[20]  E. Major Progressive multifocal leukoencephalopathy in patients on immunomodulatory therapies. , 2010, Annual review of medicine.

[21]  Emil Alexov,et al.  omology-based modeling of 3 D structures of protein – protein complexes using lignments of modified sequence profiles etras , 2008 .

[22]  Joel S. Bader,et al.  Where Have All the Interactions Gone? Estimating the Coverage of Two-Hybrid Protein Interaction Maps , 2007, PLoS Comput. Biol..

[23]  P. Bork,et al.  Drug Target Identification Using Side-Effect Similarity , 2008, Science.

[24]  G. Schneider,et al.  Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation , 2009, Proceedings of the National Academy of Sciences.

[25]  A. Barabasi,et al.  A Protein–Protein Interaction Network for Human Inherited Ataxias and Disorders of Purkinje Cell Degeneration , 2006, Cell.

[26]  Hammad Naveed,et al.  Improving the resistance of a eukaryotic β-barrel protein to thermal and chemical perturbations. , 2011, Journal of molecular biology.

[27]  Rafael C. Jimenez,et al.  The IntAct molecular interaction database in 2012 , 2011, Nucleic Acids Res..

[28]  Andrew J. Bordner,et al.  Predicting protein-protein binding sites in membrane proteins , 2009, BMC Bioinformatics.

[29]  E. De Clercq Where rilpivirine meets with tenofovir, the start of a new anti-HIV drug combination era. , 2012, Biochemical pharmacology.

[30]  Philip E. Bourne,et al.  PROMISCUOUS: a database for network-based drug-repositioning , 2010, Nucleic Acids Res..

[31]  J. Arrowsmith Trial watch: Phase III and submission failures: 2007–2010 , 2011, Nature Reviews Drug Discovery.

[32]  G. Müller,et al.  Medicinal chemistry of target family-directed masterkeys. , 2003, Drug discovery today.

[33]  R. W. Hansen,et al.  The price of innovation: new estimates of drug development costs. , 2003, Journal of health economics.

[34]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[35]  Lei Xie,et al.  Structure-based systems biology for analyzing off-target binding. , 2011, Current opinion in structural biology.

[36]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[37]  Mark A. Ragan,et al.  BMC Systems Biology BioMed Central Research article Protein-protein interaction as a predictor of subcellular location , 2008 .

[38]  Hongyu Zhao,et al.  Is Subcellular Localization Informative for Modeling Protein-Protein Interaction Signal? , 2008, J. Electr. Comput. Eng..

[39]  Paul A. Bates,et al.  Global topological features of cancer proteins in the human interactome , 2006, Bioinform..

[40]  Jae-Seong Yang,et al.  Evolutionary conservation in multiple faces of protein interaction , 2009, Proteins.

[41]  A. Bateman,et al.  Protein interactions in human genetic diseases , 2008, Genome Biology.

[42]  C. Ingles,et al.  Interaction between BRCA2 and replication protein A is compromised by a cancer-predisposing mutation in BRCA2 , 2003, Oncogene.

[43]  Michael J. Keiser,et al.  Large Scale Prediction and Testing of Drug Activity on Side-Effect Targets , 2012, Nature.

[44]  G. Klebe,et al.  Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. , 2004, Journal of medicinal chemistry.

[45]  Peter D. Karp,et al.  The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases , 2007, Nucleic Acids Res..

[46]  María J. Vicent,et al.  Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. , 2009, Advanced drug delivery reviews.

[47]  Robert B. Russell,et al.  InterPreTS: protein Interaction Prediction through Tertiary Structure , 2003, Bioinform..

[48]  Joel Dudley,et al.  Exploiting drug-disease relationships for computational drug repositioning , 2011, Briefings Bioinform..

[49]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[50]  S. Rajkumar,et al.  Thalidomide: tragic past and promising future. , 2004, Mayo Clinic proceedings.

[51]  L. Xiangjun,et al.  ? Higher Education Press and Springer-Verlag 2007 , 2007 .

[52]  J. Goodrich,et al.  Protein-protein interaction assays: eliminating false positive interactions , 2006, Nature Methods.

[53]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[54]  Haiyuan Yu,et al.  Three-dimensional reconstruction of protein networks provides insight into human genetic disease , 2012, Nature Biotechnology.

[55]  Eileen Kraemer,et al.  GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis , 2008, Nucleic Acids Res..

[56]  Stephen R Comeau,et al.  Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19 , 2010, Proteins.

[57]  Burkhard Rost,et al.  Physical protein–protein interactions predicted from microarrays , 2008, Bioinform..

[58]  R. Solé,et al.  The topology of drug-target interaction networks: implicit dependence on drug properties and target families. , 2009, Molecular bioSystems.

[59]  Hammad Naveed,et al.  TMBB-Explorer: A Webserver to Predict the Structure, Oligomerization State, Ppi Interface, and Thermodynamic Properties of the Transmembrane Domains of Outer Membrane Proteins , 2012 .

[60]  Randall C Willis,et al.  Searching, viewing, and visualizing data in the Biomolecular Interaction Network Database (BIND). , 2006, Current protocols in bioinformatics.

[61]  J. Arrowsmith Trial watch: Phase II failures: 2008–2010 , 2011, Nature Reviews Drug Discovery.

[62]  Mary K Joseph,et al.  Studies leading to potent, dual inhibitors of Bcl-2 and Bcl-xL. , 2007, Journal of medicinal chemistry.

[63]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[64]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[65]  A. Bonvin,et al.  The HADDOCK web server for data-driven biomolecular docking , 2010, Nature Protocols.

[66]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Mahdi Sarmady,et al.  HIV Protein Sequence Hotspots for Crosstalk with Host Hub Proteins , 2011, PloS one.

[68]  Y. Ruan,et al.  ChIP‐based methods for the identification of long‐range chromatin interactions , 2009, Journal of cellular biochemistry.

[69]  Babak Nadjar Araabi,et al.  Features analysis for identification of date and party hubs in protein interaction network of Saccharomyces Cerevisiae , 2010, BMC Systems Biology.

[70]  V. Nizet,et al.  A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. , 2008, Science.

[71]  Benjamin A. Shoemaker,et al.  IBIS (Inferred Biomolecular Interaction Server) reports, predicts and integrates multiple types of conserved interactions for proteins , 2011, Nucleic Acids Res..

[72]  Christie S. Chang,et al.  The BioGRID interaction database: 2013 update , 2012, Nucleic Acids Res..

[73]  Sean Ekins,et al.  In silico repositioning of approved drugs for rare and neglected diseases. , 2011, Drug discovery today.

[74]  A. Gavezzotti,et al.  Molecular recognition in organic crystals: directed intermolecular bonds or nonlocalized bonding? , 2005, Angewandte Chemie.

[75]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[76]  Pieter F. W. Stouten,et al.  Fast prediction and visualization of protein binding pockets with PASS , 2000, J. Comput. Aided Mol. Des..

[77]  Jie Liang,et al.  CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues , 2006, Nucleic Acids Res..

[78]  M. Vidal,et al.  Literature-curated protein interaction datasets , 2009, Nature Methods.

[79]  Kara Dolinski,et al.  The BioGRID Interaction Database: 2011 update , 2010, Nucleic Acids Res..

[80]  Z. Weng,et al.  ZDOCK: An initial‐stage protein‐docking algorithm , 2003, Proteins.

[81]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[82]  J. Delaney Finding and filling protein cavities using cellular logic operations. , 1992, Journal of molecular graphics.

[83]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[84]  Marc S. Cortese,et al.  Flexible nets , 2005, The FEBS journal.

[85]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[86]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2009 update , 2009, Nucleic Acids Res..

[87]  Anna R. Panchenko,et al.  Homology Inference of Protein-Protein Interactions via Conserved Binding Sites , 2012, PloS one.

[88]  Eric J Kunkel,et al.  Systems biology in drug discovery. , 2006, Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference.

[89]  R. Glaeser,et al.  Reaching the information limit in cryo-EM of biological macromolecules: experimental aspects. , 2011, Biophysical journal.

[90]  Cheng Zhu,et al.  Drug repositioning for orphan diseases , 2011, Briefings Bioinform..

[91]  Hammad Naveed,et al.  Structure-based Analysis of VDAC1 Protein , 2011, The Journal of Biological Chemistry.

[92]  T. Ashburn,et al.  Drug repositioning: identifying and developing new uses for existing drugs , 2004, Nature Reviews Drug Discovery.

[93]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[94]  Stephen R. Comeau,et al.  PIPER: An FFT‐based protein docking program with pairwise potentials , 2006, Proteins.

[95]  Jie Liang,et al.  Accuracy of functional surfaces on comparatively modeled protein structures , 2011, Journal of Structural and Functional Genomics.

[96]  Hongkang Mei,et al.  Systematic Prediction of Pharmacodynamic Drug-Drug Interactions through Protein-Protein-Interaction Network , 2013, PLoS Comput. Biol..

[97]  Hammad Naveed,et al.  Predicting weakly stable regions, oligomerization state, and protein–protein interfaces in transmembrane domains of outer membrane proteins , 2009, Proceedings of the National Academy of Sciences.

[98]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[99]  R Abagyan,et al.  Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs , 2007, Proceedings of the National Academy of Sciences.

[100]  N. Chandra,et al.  Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance , 2008, BMC Microbiology.

[101]  Hunter B. Fraser,et al.  Modularity and evolutionary constraint on proteins , 2005, Nature Genetics.

[102]  J. Whisstock,et al.  Prediction of protein function from protein sequence and structure , 2003, Quarterly Reviews of Biophysics.

[103]  Ozlem Keskin,et al.  PRISM: protein interactions by structural matching , 2005, Nucleic Acids Res..

[104]  M. Vidal,et al.  Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or "interologs". , 2001, Genome research.

[105]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[106]  Hammad Naveed,et al.  Engineered oligomerization state of OmpF protein through computational design decouples oligomer dissociation from unfolding. , 2012, Journal of molecular biology.

[107]  Ivica Letunic,et al.  metaTIGER: a metabolic evolution resource , 2008, Nucleic Acids Res..

[108]  J. Andrew McCammon,et al.  Discovery of drug-like inhibitors of an essential RNA-editing ligase in Trypanosoma brucei , 2008, Proceedings of the National Academy of Sciences.

[109]  Philip E. Bourne,et al.  Drug Off-Target Effects Predicted Using Structural Analysis in the Context of a Metabolic Network Model , 2010, PLoS Comput. Biol..

[110]  Dennis P Wall,et al.  A simple dependence between protein evolution rate and the number of protein-protein interactions , 2003, BMC Evolutionary Biology.

[111]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[112]  Solomon Nwaka,et al.  Innovative lead discovery strategies for tropical diseases , 2006, Nature Reviews Drug Discovery.

[113]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[114]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[115]  Andreas Hoppe,et al.  Docking without docking: ISEARCH—prediction of interactions using known interfaces , 2007, Proteins.

[116]  Thomas Lengauer,et al.  Hierarchical Bayes Model for Predicting Effectiveness of HIV Combination Therapies , 2012, Statistical applications in genetics and molecular biology.

[117]  Peter Uetz,et al.  Analysis of protein-protein interactions using high-throughput yeast two-hybrid screens. , 2011, Methods in molecular biology.

[118]  Bin Chen,et al.  Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data , 2010, BMC Bioinformatics.

[119]  Patrick Aloy,et al.  Interrogating protein interaction networks through structural biology , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[120]  R. Sharan,et al.  Protein networks in disease. , 2008, Genome research.

[121]  Shinichiro Wachi,et al.  Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues , 2005, Bioinform..

[122]  Vladimir N. Uversky,et al.  The roles of intrinsic disorder in protein interaction networks , 2013 .

[123]  César A. Hidalgo,et al.  Scale-free networks , 2008, Scholarpedia.

[124]  Peter D. Karp,et al.  EcoCyc: fusing model organism databases with systems biology , 2012, Nucleic Acids Res..

[125]  Nir London,et al.  Can self‐inhibitory peptides be derived from the interfaces of globular protein–protein interactions? , 2010, Proteins.

[126]  A. Ayhan,et al.  Emerging drugs in endometrial cancers , 2010, Expert opinion on emerging drugs.

[127]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[128]  Jonathan Qiang Jiang,et al.  Predicting multiplex subcellular localization of proteins using protein-protein interaction network: a comparative study , 2012, BMC Bioinformatics.

[129]  Eric Ennifar,et al.  X-ray crystallography as a tool for mechanism-of-action studies and drug discovery. , 2013, Current pharmaceutical biotechnology.

[130]  S. Rees,et al.  Principles of early drug discovery , 2011, British journal of pharmacology.

[131]  Bruce L. Booth,et al.  Quest for the best , 2003, Nature Reviews Drug Discovery.

[132]  Sergey Lyskov,et al.  The RosettaDock server for local protein–protein docking , 2008, Nucleic Acids Res..

[133]  B. Honig,et al.  Structure-based prediction of protein-protein interactions on a genome-wide scale , 2012, Nature.

[134]  Ozlem Keskin,et al.  Constructing structural networks of signaling pathways on the proteome scale. , 2012, Current opinion in structural biology.

[135]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[136]  Ker-Chau Li,et al.  Patterns of co-expression for protein complexes by size in Saccharomyces cerevisiae , 2008, Nucleic acids research.

[137]  Thomas J. Begley,et al.  Global network analysis of phenotypic effects: Protein networks and toxicity modulation in Saccharomyces cerevisiae , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[138]  Patrick Aloy,et al.  Recycling side-effects into clinical markers for drug repositioning , 2012, Genome Medicine.

[139]  D. Tatro Drug Interaction Facts , 1990 .