GOMOS data characterisation and error estimation

The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument uses stellar occultation tech- nique for monitoring ozone, other trace gases and aerosols in the stratosphere and mesosphere. The self-calibrating mea- surement principle of GOMOS together with a relatively simple data retrieval where only minimal use of a priori data is required provides excellent possibilities for long-term monitoring of atmospheric composition. GOMOS uses about 180 of the brightest stars as its light source. Depending on the individual spectral characteris- tics of the stars, the signal-to-noise ratio of GOMOS varies from star to star, resulting also in varying accuracy of re- trieved profiles. We present here an overview of the GOMOS data characterisation and error estimation, including model- ing errors, for O3, NO2, NO3 and aerosol profiles. The re- trieval error (precision) of night-time measurements in the stratosphere is typically 0.5-4% for ozone, about 10-20% for NO2, 20-40% for NO3 and 2-50% for aerosols. Meso- spheric O3, up to 100 km, can be measured with 2-10% precision. The main sources of the modeling error are in- completely corrected scintillation, inaccurate aerosol mod- eling, uncertainties in cross sections of trace gases and in atmospheric temperature. The sampling resolution of GO- MOS varies depending on the measurement geometry. In the data inversion a Tikhonov-type regularization with pre- defined target resolution requirement is applied leading to 2- 3 km vertical resolution for ozone and 4 km resolution for other trace gases and aerosols.

[1]  G. Barrot,et al.  Retrievals from GOMOS stellar occultation measurements using characterization of modeling errors , 2010 .

[2]  E. Kyrölä,et al.  Diurnal variation of ozone depletion during the October-November 2003 solar proton events , 2005 .

[3]  J. Tamminen,et al.  Does a Priori Information Improve the Retrievals of Stellar Occultation Measurements , 2004 .

[4]  G. Barrot,et al.  Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT , 2010 .

[5]  J. Burrows,et al.  ATMOSPHERIC REMOTE-SENSING REFERENCE DATA FROM GOME — 2 . TEMPERATURE-DEPENDENT ABSORPTION CROSS SECTIONS OF O 3 IN THE 231 — 794 NM RANGE , 1998 .

[6]  J. Russell,et al.  Large increase of NO2 in the north polar mesosphere in January–February 2004: Evidence of a dynamical origin from GOMOS/ENVISAT and SABER/TIMED data , 2007 .

[7]  Marko Laine,et al.  Aerosol model selection and uncertainty modelling by adaptive MCMC technique , 2008 .

[8]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[9]  J. Tamminen,et al.  Modeling Errors of GOMOS Measurements: A Sensitivity Study , 2006 .

[10]  Robert DeMajistre,et al.  Intercomparison of MSX/UVISI‐derived ozone and temperature profiles with ground‐based, SAGE II, HALOE, and POAM III data , 2003 .

[11]  Johannes Orphal,et al.  ATMOSPHERIC REMOTE-SENSING REFERENCE DATA FROM GOME: PART 1. TEMPERATURE-DEPENDENT ABSORPTION CROSS-SECTIONS OF NO2 IN THE 231–794 nm RANGE , 1998 .

[12]  A. Gurvich,et al.  Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction. , 2001, Applied optics.

[13]  J. Tamminen,et al.  GOMOS Ozone Profiles at High Latitudes: Comparison with Marambio and Sodankylä Sonde Measurements , 2006 .

[14]  J. Tamminen Validation of nonlinear inverse algorithms with Markov chain Monte Carlo method , 2004 .

[15]  K. Strawbridge,et al.  GOMOS ozone profile validation using ground-based and balloon sonde measurements , 2010 .

[16]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[17]  Philippe Keckhut,et al.  Pole‐to‐pole validation of Envisat GOMOS ozone profiles using data from ground‐based and balloon sonde measurements , 2004 .

[18]  Larry J. Paxton,et al.  Atmospheric remote sensing using a combined extinctive and refractive stellar occultation technique 1. Overview and proof‐of‐concept observations , 2002 .

[19]  M. Guirlet,et al.  Retrieval of atmospheric parameters from GOMOS data , 2010 .

[20]  Alain Hauchecorne,et al.  Solar proton events of October–November 2003: Ozone depletion in the Northern Hemisphere polar winter as seen by GOMOS/Envisat , 2004 .

[21]  U. Cortesi,et al.  Statistical comparison of night-time NO2 observations in 2003–2006 from GOMOS and MIPAS instruments , 2009 .

[22]  G. Berthet,et al.  Validation of GOMOS‐Envisat vertical profiles of O3, NO2, NO3, and aerosol extinction using balloon‐borne instruments and analysis of the retrievals , 2008 .

[23]  A. Hauchecorne,et al.  Climatology and comparison of ozone from ENVISAT/GOMOS and SHADOZ/balloon-sonde observations in the southern tropics , 2010 .

[24]  Paul B. Hays,et al.  Stellar Spectra and Atmospheric Composition , 1968 .

[25]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[26]  Heikki Haario,et al.  Ozone profile smoothness as a priori information in the inversion of limb measurements , 2004 .

[27]  G. Barrot,et al.  GOMOS on Envisat: an overview , 2004 .

[28]  J. Tamminen,et al.  Bayesian solution for nonlinear and non‐Gaussian inverse problems by Markov chain Monte Carlo method , 2001 .

[29]  Alain Hauchecorne,et al.  Influence of scintillation on quality of ozone monitoring by GOMOS , 2009 .

[30]  D. Fussen,et al.  Global measurement of the mesospheric sodium layer by the star occultation instrument GOMOS , 2004 .

[31]  Cora E. Randall,et al.  Arctic and Antarctic polar winter NOx and energetic particle precipitation in 2002–2006 , 2007 .

[32]  M. Guirlet,et al.  First results on GOMOS/ENVISAT , 2002 .