Resonant transmittance through metal films with fabricated and light-induced modulation

It is shown that the optical transmittance through a periodically modulated metal film is strongly enhanced when an incident wave is in resonance with surface plasmon-polaritons in the film. Analytical equations describing the resonance transmittance, reflectance, and absorptance are derived. The explicit dependence of the transmittance, reflectance, and absorptance on the dielectric permittivity of the film, its thickness, and modulation is obtained and analyzed. The developed approach includes nonlinear effects and describes the case when the film properties depend on the intensity of incident light. A means of inducing and controlling the extraordinary optical transmittance with light itself is proposed and discussed. It is predicted that an optical bistability can occur in a modulated metal film.

[1]  M. C. Netti,et al.  Confined plasmons in metallic nanocavities. , 2001, Physical review letters.

[2]  Eric Bourillot,et al.  Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles , 1999 .

[3]  Maradudin,et al.  Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light. , 1985, Physical review. B, Condensed matter.

[4]  J. Roy Sambles,et al.  Sharp Surface-Plasmon Resonances on Deep Diffraction Gratings , 1997 .

[5]  Stefan Enoch,et al.  Theory of light transmission through subwavelength periodic hole arrays , 2000 .

[6]  P. Lalanne,et al.  One-mode model and Airy-like formulae for one-dimensional metallic gratings , 2000 .

[7]  M. Nieto-Vesperinas,et al.  Model near field calculations for optical data storage readout , 1997 .

[8]  A. Maradudin,et al.  Surface Polaritons On Large-amplitude Gratings , 1981 .

[9]  D. Heitmann,et al.  SURFACE-PLASMON-ENHANCED TRANSMISSION THROUGH METALLIC GRATINGS , 1998 .

[10]  Michael Treacy,et al.  Dynamical diffraction in metallic optical gratings , 1999 .

[11]  J. Hvam,et al.  Waveguiding in surface plasmon polariton band gap structures. , 2001, Physical review letters.

[12]  F. García-Vidal,et al.  Transmission Resonances on Metallic Gratings with Very Narrow Slits , 1999, cond-mat/9904365.

[13]  Y. Zhao,et al.  Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film. , 2000, Optics letters.

[14]  Sergey I. Bozhevolnyi,et al.  Two-Dimensional Micro-Optics of Surface Plasmons , 1997 .

[15]  Thomas W. Ebbesen,et al.  Fornel, Frédérique de , 2001 .

[16]  Surface polaritons on an array of rectangular grooves , 1986 .

[17]  Vladimir M. Shalaev,et al.  Near-field optical studies of semicontinuous metal films , 2001 .

[18]  S. Seshadri Leaky surface polariton , 1986 .

[19]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[20]  Vladimir M. Shalaev,et al.  Local electric and magnetic fields in semicontinuous metal films: Beyond the quasistatic approximation , 2000 .

[21]  Christopher Robert Lawrence,et al.  Grating-coupled surface plasmons at microwave frequencies , 1999 .

[22]  Martin Koch,et al.  Launching surface plasmons into nanoholes in metal films , 2000 .

[23]  J. Pendry,et al.  Theory of extraordinary optical transmission through subwavelength hole arrays. , 2000, Physical review letters.

[24]  J. Vigoureux Analysis of the Ebbesen experiment in the light of evanescent short range diffraction , 2001 .

[25]  S. Seshadri Coupling of surface polaritons incident obliquely on a small amplitude grating , 1985 .

[26]  J. Pendry,et al.  Collective Theory for Surface Enhanced Raman Scattering. , 1996, Physical review letters.

[27]  O. Buisson,et al.  Plasma modes in periodic two-dimensional superconducting-wire networks , 1998 .

[28]  S. Seshadri,et al.  A cylindrical waveguide with periodic step changes in the radius: Interaction between two transverse magnetic modes , 1988 .

[29]  Luther-Davies,et al.  High transparency of classically opaque metallic films. , 1985, Physical review letters.

[30]  S. Seshadri Frequency shift of the band gap of the surface polaritons on a grating , 1985 .

[31]  M. Sickmiller,et al.  3D Wire mesh photonic crystals. , 1996, Physical review letters.

[32]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[33]  Thomas W. Ebbesen,et al.  Crucial role of metal surface in enhanced transmission through subwavelength apertures , 2000 .

[34]  Kam Sing Wong,et al.  Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale , 1998 .

[35]  J. Pendry,et al.  Evanescently coupled resonance in surface plasmon enhanced transmission , 2001 .

[36]  P. Sheng,et al.  Third-order optical nonlinearity enhancement through composite microstructures , 1998 .

[37]  T. Hildebrandt,et al.  Plasmon Confinement in Ultrathin Continuous Ag Films , 1999 .

[38]  Simion Astilean,et al.  Light transmission through metallic channels much smaller than the wavelength , 2000 .

[39]  A. Zayats,et al.  Near-field distribution of optical transmission of periodic subwavelength holes in a metal film. , 2001, Physical review letters.

[40]  H. Lezec,et al.  Control of optical transmission through metals perforated with subwavelength hole arrays. , 1999, Optics letters.

[41]  J. R. Sambles,et al.  Stationary Surface Plasmons on a Zero-Order Metal Grating , 1998 .

[42]  S. Goyal,et al.  Strain derivatives of the elastic and dielectric constants of silver and thallium halides , 1979 .

[43]  Alexei A. Maradudin,et al.  Coherent scattering enhancement in systems bounded by rough surfaces , 1997 .

[44]  Kitson,et al.  Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. , 1996, Physical review. B, Condensed matter.

[45]  S. Bozhevolnyi,et al.  Statistics of local field intensity enhancements at nanostructured surfaces investigated with a near-field optical microscope , 2001 .

[46]  N. Zheludev,et al.  Femtosecond cubic optical nonlinearity of thin nickel films. , 1999, Optics letters.

[47]  C Peng Superresolution Near-field Readout in Phase-Change Optical Disk Data Storage. , 2001, Applied optics.

[48]  Vladimir M. Shalaev,et al.  Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites , 2000 .

[49]  Thomas W. Ebbesen,et al.  Surface plasmons enhance optical transmission through subwavelength holes , 1998 .

[50]  F. J. Garcia-Vidal,et al.  SURFACE SHAPE RESONANCES IN LAMELLAR METALLIC GRATINGS , 1998 .

[51]  P. Lalanne,et al.  Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. , 2002, Physical review letters.

[52]  J. Tominaga,et al.  Super-Resolution Near-Field Structure and Signal Enhancement by Surface Plasmons , 2001 .

[53]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[54]  Vladimir M. Shalaev,et al.  EXPERIMENTAL OBSERVATION OF LOCALIZED OPTICAL EXCITATIONS IN RANDOM METAL-DIELECTRIC FILMS , 1999 .

[55]  Thomas W. Ebbesen,et al.  Surface-plasmon-enhanced transmission through hole arrays in Cr films , 1999 .

[56]  David D. Nolte,et al.  Semi-insulating semiconductor heterostructures: Optoelectronic properties and applications , 1999 .

[57]  R. Wannemacher Plasmon-supported transmission of light through nanometric holes in metallic thin films , 2001 .

[58]  Jacques Lafait,et al.  Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites , 2000 .

[59]  Ajay Nahata,et al.  Giant optical transmission of sub-wavelength apertures: physics and applications , 2002 .

[60]  T. A. Leskova,et al.  Resonant scattering of electromagnetic waves from a rectangular groove on a perfectly conducting surface , 1997 .

[61]  Shanhui Fan,et al.  3D Metallo-Dielectric Photonic Crystals with Strong Capacitive Coupling between Metallic Islands , 1998 .

[62]  D. Heitmann,et al.  Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration , 1999 .

[63]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.