Packing Non-Returning A-Paths*
暂无分享,去创建一个
Chudnovsky et al. gave a min-max formula for the maximum number of node-disjoint nonzero A-paths in group-labeled graphs [1], which is a generalization of Mader's theorem on node-disjoint A-paths [3]. Here we present a further generalization with a shorter proof. The main feature of Theorem 2.1 is that parity is “hidden” inside $$
\ifmmode\expandafter\hat\else\expandafter\^\fi{v}
$$, which is given by an oracle for non-bipartite matching.
[1] András Sebö,et al. The Path-Packing Structure of Graphs , 2004, IPCO.
[2] András Sebő,et al. The Path-Packing Structure of Graphs , 2004 .
[3] Paul D. Seymour,et al. Packing Non-Zero A-Paths In Group-Labelled Graphs , 2006, Comb..
[4] W. Mader. Über die Maximalzahl kreuzungsfreierH-Wege , 1978 .
[5] T. Gallai. Maximum-Minimum Sätze und verallgemeinerte Faktoren von Graphen , 1964 .