Continuous-Time Models, Realized Volatilities, and Testable Distributional Implications for Daily Stock Returns

We provide an empirical framework for assessing the distributional properties of daily speculative returns within the context of the continuous-time jump diffusion models traditionally used in asset pricing finance. Our approach builds directly on recently developed realized variation measures and non-parametric jump detection statistics constructed from high-frequency intra-day data. A sequence of simple-to-implement moment-based tests involving various transformations of the daily returns speak directly to the importance of different distributional features, and may serve as useful diagnostic tools in the specification of empirically more realistic continuous-time asset pricing models. On applying the tests to the 30 individual stocks in the Dow Jones Industrial Average index, we find that it is important to allow for both time-varying diffusive volatility, jumps, and leverage effects to satisfactorily describe the daily stock price dynamics. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  P. Mykland,et al.  Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics , 2008 .

[2]  Federico M. Bandi,et al.  Microstructure Noise, Realized Variance, and Optimal Sampling , 2008 .

[3]  M. Nielsen,et al.  Finite sample accuracy and choice of sampling frequency in integrated volatility estimation , 2008 .

[4]  D. Dijk,et al.  Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data—But Which Frequency to Use? , 2008 .

[5]  T. Bollerslev,et al.  A Reduced Form Framework for Modeling Volatility of Speculative Prices Based on Realized Variation Measures , 2008 .

[6]  R. Oomen,et al.  Testing for Jumps When Asset Prices are Observed with Noise - A Swap Variance Approach , 2007 .

[7]  Tim Bollerslev,et al.  Jumps and Betas: A New Framework for Disentangling and Estimating Systematic Risks , 2007 .

[8]  Michael Jansson,et al.  Semiparametric Power Envelopes for Tests of the Unit Root Hypothesis , 2007 .

[9]  Richard K. Crump,et al.  FEDERAL RESERVE BANK O F NEW YORK , 2011 .

[10]  B. Christensen,et al.  Long Memory in Stock Market Volatility and the Volatility-in-Mean Effect: The FIEGARCH-M Model , 2007 .

[11]  B. Christensen,et al.  The Role of Implied Volatility in Forecasting Future Realized Volatility and Jumps in Foreign Exchange, Stock, and Bond Markets , 2007 .

[12]  T. Bollerslev,et al.  Expected Stock Returns and Variance Risk Premia , 2007 .

[13]  T. Bollerslev,et al.  No-Arbitrage Semi-Martingale Restrictions for Continuous-Time Volatility Models Subject to Leverage Effects, Jumps and I.I.D. Noise: Theory and Testable Distributional Implications , 2007 .

[14]  T. Bollerslev,et al.  A Discrete-Time Model for Daily S&P500 Returns and Realized Variations: Jumps and Leverage Effects , 2007 .

[15]  F. Diebold,et al.  Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility , 2005, The Review of Economics and Statistics.

[16]  Neil Shephard,et al.  Designing Realised Kernels to Measure the Ex-Post Variation of Equity Prices in the Presence of Noise , 2008 .

[17]  R. Peters,et al.  Testing the Continuous Semimartingale Hypothesis for the S&P 500 , 2006 .

[18]  Francis X. Diebold,et al.  Real-Time Price Discovery in Global Stock, Bond and Foreign Exchange Markets , 2006 .

[19]  N. U. Prabhu,et al.  Stochastic Processes and Their Applications , 1999 .

[20]  Jeff Fleming,et al.  High-Frequency Returns, Jumps and the Mixture of Normals Hypothesis , 2006 .

[21]  Kim Christensen,et al.  Realized Range-Based Estimation of Integrated Variance , 2006 .

[22]  C. Granger,et al.  Handbook of Economic Forecasting , 2006 .

[23]  R. Oomen Properties of Realized Variance Under Alternative Sampling Schemes , 2006 .

[24]  Per A. Mykland,et al.  Jumps in Real-Time Financial Markets: A New Nonparametric Test and Jump Dynamics , 2006 .

[25]  A. Murphy,et al.  Order Flow , Transaction Clock , and Normality of Asset Returns : Ané and Geman ( 2000 ) Revisited , 2006 .

[26]  F. Diebold,et al.  Chapter 15 Volatility and Correlation Forecasting , 2006 .

[27]  T. Bollerslev,et al.  A Semiparametric Framework for Modelling and Forecasting Jumps and Volatility in Speculative Prices , 2006 .

[28]  Neil Shephard,et al.  Limit theorems for multipower variation in the presence of jumps , 2006 .

[29]  A. Murphy,et al.  Order Flow, Transaction Clock, and Normality of Asset Returns: A Comment on Ané and Geman (2000) , 2005 .

[30]  F. Lillo,et al.  There's more to volatility than volume , 2005, physics/0510007.

[31]  Dick J. C. van Dijk,et al.  Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data - But Which Frequency to Use? , 2005 .

[32]  P. Hansen,et al.  Realized Variance and Market Microstructure Noise , 2005 .

[33]  George Tauchen,et al.  Cross-Stock Comparisons of the Relative Contribution of Jumps to Total Price Variance , 2012 .

[34]  P. Hansen,et al.  A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data , 2005 .

[35]  T. Bollerslev,et al.  Leverage and Volatility Feedback Effects in High-Frequency Data , 2005 .

[36]  T. Bollerslev,et al.  A Discrete-Time Model for Daily S&P 500 Returns and Realized Variations: Jumps and Leverage Effects , 2005 .

[37]  M. Nielsen,et al.  Finite Sample Accuracy of Integrated Volatility Estimators , 2005 .

[38]  Roel C. A. Oomen,et al.  A New Test for Jumps in Asset Prices , 2005 .

[39]  C. Bontemps,et al.  Testing Distributional Assumptions: A GMM Approach , 2007 .

[40]  Michael S. Gibson,et al.  Dynamic Estimation of Volatility Risk Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities , 2007 .

[41]  Neil Shephard,et al.  Multipower Variation and Stochastic Volatility , 2004 .

[42]  Jeffrey R. Russell,et al.  Microstructure noise, realized volatility, and optimal sampling , 2004 .

[43]  Bjørn Eraker Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices , 2004 .

[44]  Michael S. Johannes,et al.  The Statistical and Economic Role of Jumps in Continuous-Time Interest Rate Models , 2004 .

[45]  Gammel Kongevej Local linear density estimation for filtered survival data, with bias correction , 2004 .

[46]  N. Shephard,et al.  Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation , 2005 .

[47]  Robert F. Engle,et al.  Risk and Volatility: Econometric Models and Financial Practice , 2004 .

[48]  A. Gallant,et al.  Alternative models for stock price dynamics , 2003 .

[49]  Yacine Ait-Sahalia,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[50]  Chris Kirby,et al.  The economic value of volatility timing using “realized” volatility ☆ , 2003 .

[51]  Thomas H. McCurdy,et al.  News Arrival, Jump Dynamics and Volatility Components for Individual Stock Returns , 2003 .

[52]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[53]  N. Shephard,et al.  Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics , 2004 .

[54]  N. Meddahi,et al.  Testing normality: a GMM approach , 2004 .

[55]  N. Shephard,et al.  Estimating quadratic variation using realized variance , 2002 .

[56]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[57]  M. Martens,et al.  Testing the Mixture of Distributions Hypothesis Using "Realized" Volatility , 2002 .

[58]  Chris Kirby,et al.  The Economic Value of Volatility Timing Using 'Realized' Volatility , 2001 .

[59]  Luca Benzoni,et al.  An Empirical Investigation of Continuous-Time Equity Return Models , 2001 .

[60]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[61]  R. Gencay,et al.  An Introduc-tion to High-Frequency Finance , 2001 .

[62]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[63]  Cecilia Mancini,et al.  Disentangling the jumps of the diffusion in a geometric jumping Brownian motion , 2001 .

[64]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[65]  H. Geman,et al.  Order Flow, Transaction Clock, and Normality of Asset Returns , 2000 .

[66]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[67]  David S. Bates Post-'87 crash fears in the S&P 500 futures option market , 2000 .

[68]  F. Diebold,et al.  The Distribution of Exchange Rate Volatility , 1999 .

[69]  T. Bollerslev,et al.  Equity trading volume and volatility: Latent information arrivals and common long-run dependencies , 1999 .

[70]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[71]  T. Bollerslev,et al.  Deutsche Mark–Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies , 1998 .

[72]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[73]  T. Andersen Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility , 1996 .

[74]  Dongcheol Kim,et al.  Alternative Models for the Conditional Heteroscedasticity of Stock Returns , 1994 .

[75]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[76]  Peter E. Rossi,et al.  Stock Prices and Volume , 1992 .

[77]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[78]  R. Baillie,et al.  The Message in Daily Exchange Rates , 1989 .

[79]  David A. Hsieh,et al.  Modeling Heteroscedasticity in Daily Foreign-Exchange Rates , 1989 .

[80]  T. Bollerslev,et al.  A CONDITIONALLY HETEROSKEDASTIC TIME SERIES MODEL FOR SPECULATIVE PRICES AND RATES OF RETURN , 1987 .

[81]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[82]  Tze Leung Lai,et al.  Fixed Accuracy Estimation of an Autoregressive Parameter , 1983 .

[83]  George Tauchen,et al.  THE PRICE VARIABILITY-VOLUME RELATIONSHIP ON SPECULATIVE MARKETS , 1983 .

[84]  A. Christie,et al.  The stochastic behavior of common stock variances: value , 1982 .

[85]  T. W. Epps The Stochastic Dependence of Security Price Changes and Transaction Volumes in a Model with Temporally Dependent Price Changes , 1976 .

[86]  T. W. Epps,et al.  The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis , 1976 .

[87]  F. Black The pricing of commodity contracts , 1976 .

[88]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[89]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[90]  P. Clark A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices , 1973 .

[91]  L. Dubins,et al.  ON CONTINUOUS MARTINGALES. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[92]  F. Eugene FAMA, . The Behavior of Stock-Market Prices, Journal of Business, , . , 1965 .

[93]  K. E. Dambis,et al.  On the Decomposition of Continuous Submartingales , 1965 .

[94]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[95]  B. Mandlebrot The Variation of Certain Speculative Prices , 1963 .