Some Efficiency Results for the Estimation of the Mixing Proportion in a Mixture of 2 Normal-Distributions

The problem of estimating the mixing proportion of a mixture of two multivariate normal distributions with unknown means and common but unknown covariance matrix is examined.-from Authors

[1]  Wei-Chien Chang Confidence Interval Estimation and Transformation of Data in a Mixture of Two Multivariate Normal Distributions With Any Given Large Dimension , 1979 .

[2]  Geoffrey J. McLachlan,et al.  A case study of two clustering methods based on maximum likelihood , 1979 .

[3]  G. McLachlan,et al.  Small sample results for a linear discriminant function estimated from a mixture of normal populations , 1979 .

[4]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[5]  Terence J. O'Neill Normal Discrimination with Unclassified Observations , 1978 .

[6]  G. McLachlan,et al.  The efficiency of a linear discriminant function based on unclassified initial samples , 1978 .

[7]  R. Randles,et al.  Generalized Linear and Quadratic Discriminant Functions Using Robust Estimates , 1978 .

[8]  A. F. Smith,et al.  A Quasi‐Bayes Sequential Procedure for Mixtures , 1978 .

[9]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[10]  Demetrios Kazakos,et al.  Recursive estimation of prior probabilities using a mixture , 1977, IEEE Trans. Inf. Theory.

[11]  D. Hosmer,et al.  Information and mixtures of two normal distributions , 1977 .

[12]  W. C. Chang The Effects of Adding a Variable in Dissecting a Mixture of Two Normal Populations with a Common Covariance Matrix , 1976 .

[13]  Patrick L. Odell,et al.  Concerning several methods for estimating crop acreages using remote sensing data , 1976 .

[14]  P. Odell Current and past roles of the statistician in space applications , 1976 .

[15]  W. A. Coberly,et al.  An empirical sensitivity study of mixture proportion estimators , 1976 .

[16]  B. Efron The Efficiency of Logistic Regression Compared to Normal Discriminant Analysis , 1975 .

[17]  G J McLachlan,et al.  Confidence intervals for the conditional probability of misallocation in discriminant analysis. , 1975, Biometrics.

[18]  G. McLachlan An Asymptotic Unbiased Technique for Estimating the Error Rates in Discriminant Analysis , 1974 .

[19]  D. Hosmer A Comparison of Iterative Maximum Likelihood Estimates of the Parameters of a Mixture of Two Normal Distributions Under Three Different Types of Sample , 1973 .

[20]  D. C. Bowden,et al.  MAXIMUM LIKELIHOOD ESTIMATION FOR MIXTURES OF TWO NORMAL DISTRIBUTIONS , 1973 .

[21]  David W. Hosmer,et al.  On mle of the parameters of a mixture of two normal distributions when the sample size is small , 1973 .

[22]  N. L. Johnson Some simple tests of mixtures with symmetrical components , 1973 .

[23]  C. Robertson,et al.  A comparison of some methods for estimating mixed normal distributions , 1972 .

[24]  J. Behboodian Information matrix for a mixture of two normal distributions , 1972 .

[25]  W. Y. Tan,et al.  Some Comparisons of the Method of Moments and the Method of Maximum Likelihood in Estimating Parameters of a Mixture of Two Normal Densities , 1972 .

[26]  J. Wolfe PATTERN CLUSTERING BY MULTIVARIATE MIXTURE ANALYSIS. , 1970, Multivariate behavioral research.

[27]  N. E. Day Estimating the components of a mixture of normal distributions , 1969 .

[28]  M. R. Mickey,et al.  Estimation of Error Rates in Discriminant Analysis , 1968 .

[29]  D. Boes On the Estimation of Mixing Distributions , 1966 .

[30]  Bruce M. Hill,et al.  Information for Estimating the Proportions in Mixtures of Exponential and Normal Distributions , 1963 .

[31]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .