Including nonequilibrium interface kinetics in a continuum model for melting nanoscaled particles

The melting temperature of a nanoscaled particle is known to decrease as the curvature of the solid-melt interface increases. This relationship is most often modelled by a Gibbs–Thomson law, with the decrease in melting temperature proposed to be a product of the curvature of the solid-melt interface and the surface tension. Such a law must break down for sufficiently small particles, since the curvature becomes singular in the limit that the particle radius vanishes. Furthermore, the use of this law as a boundary condition for a Stefan-type continuum model is problematic because it leads to a physically unrealistic form of mathematical blow-up at a finite particle radius. By numerical simulation, we show that the inclusion of nonequilibrium interface kinetics in the Gibbs–Thomson law regularises the continuum model, so that the mathematical blow up is suppressed. As a result, the solution continues until complete melting, and the corresponding melting temperature remains finite for all time. The results of the adjusted model are consistent with experimental findings of abrupt melting of nanoscaled particles. This small-particle regime appears to be closely related to the problem of melting a superheated particle.

[1]  T. Myers,et al.  Spherically symmetric nanoparticle melting with a variable phase change temperature , 2013, Journal of Nanoparticle Research.

[2]  A. M. Meirmanov The Stefan problem with surface tension in the three dimensional case with spherical symmetry: nonexistence of the classical solution , 1994 .

[3]  Boris Wilthan,et al.  Enthalpy, heat of fusion and specific electrical resistivity of pure silver, pure copper and the binary Ag-28Cu alloy , 2006 .

[4]  James M. Hill,et al.  Nanoparticle melting as a stefan moving boundary problem. , 2009, Journal of nanoscience and nanotechnology.

[5]  Stephen H. Davis,et al.  Theory of Solidification , 2001 .

[6]  Sam Howison,et al.  Singularity development in moving-boundary problems , 1985 .

[7]  M. Wautelet,et al.  Mechanical and Thermal Properties of Metallic and Semiconductive Nanostructures , 2008 .

[8]  G. Deutscher,et al.  Surface melting enhanced by curvature effects , 1994 .

[9]  M. Ashby,et al.  Engineering Materials 2: An Introduction to Microstructures, Processing and Design , 1986 .

[10]  M. A. Herrero,et al.  A note on the dissolution of spherical crystals , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  C. Wronski The size dependence of the melting point of small particles of tin , 1967 .

[12]  S. Osher,et al.  A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.

[13]  S. Mitchell,et al.  One-dimensional solidification of supercooled melts , 2013 .

[14]  Wangyu Hu,et al.  Size Effect on the Thermodynamic Properties of Silver Nanoparticles , 2008 .

[15]  John R. King,et al.  The Stefan Problem with Nonlinear Kinetic Undercooling , 2003 .

[16]  D. Hutchins,et al.  Melting behaviour of differently-sized micro-particles in a pipe flow under constant heat flux , 2014 .

[17]  L. Allen,et al.  Melting point depression of Al clusters generated during the early stages of film growth: Nanocalorimetry measurements , 1998 .

[18]  Miguel A. Herrero,et al.  Singularity formation in the one-dimensional supercooled Stefan problem , 1996, European Journal of Applied Mathematics.

[19]  A. Karma,et al.  Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  M. Wautelet ON THE SHAPE DEPENDENCE OF THE MELTING TEMPERATURE OF SMALL PARTICLES , 1998 .

[21]  Jian Lu,et al.  Mathematical modeling of laser induced heating and melting in solids , 2001 .

[22]  Julian M. Back,et al.  Numerical study of two ill-posed one phase Stefan problems , 2011 .

[23]  A. Stella,et al.  Melting of clusters approaching 0D , 1999 .

[24]  John R. King,et al.  Asymptotic results for the Stefan problem with kinetic undercooling , 2000 .

[25]  L. Buchaillot,et al.  Modeling the Melting Enthalpy of Nanomaterials , 2009 .

[26]  Scott W McCue,et al.  Classical two-phase Stefan problem for spheres , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  James M. Hill,et al.  Micro/nanoparticle melting with spherical symmetry and surface tension , 2009 .

[28]  C. C. Chen,et al.  Phase field modeling of crystal growth with nonlinear kinetics , 2013 .

[29]  Scott W. McCue,et al.  Single phase limit for melting nanoparticles , 2009 .

[30]  Q. Mei,et al.  Melting and superheating of crystalline solids: From bulk to nanocrystals , 2007 .

[31]  M. Wautelet On the melting of polyhedral elemental nanosolids , 2005 .

[32]  J. Cohen,et al.  Melting of Pb nanocrystals , 1998 .

[33]  Karl -Joseph Hanszen,et al.  Theoretische Untersuchungen über den Schmelzpunkt kleiner Kügelchen , 1960 .

[34]  Schafer,et al.  Melting of isolated tin nanoparticles , 2000, Physical review letters.

[35]  A mathematical model for nanoparticle melting with density change , 2015 .

[36]  N. Anderson,et al.  Surface phenomena in metals and alloys , 1962 .

[37]  S. L. Mitchell,et al.  Asymptotic, numerical and approximate techniques for a free boundary problem arising in the diffusion of glassy polymers , 2012, Appl. Math. Comput..

[38]  John R. King,et al.  Regularization by Kinetic Undercooling of Blow-up in the Ill-posed Stefan Problem , 2005, SIAM J. Appl. Math..

[39]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[40]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[41]  Andreoni,et al.  Melting of small gold particles: Mechanism and size effects. , 1991, Physical review letters.

[42]  Brian Ralph Engineering Materials 2 (An Introduction to Microstructures, Processing and Design), 3rd Edition, M.F. Ashby, D.R.H. Jones. Elsevier, Amsterdam (2006), ISBN 978-0-7506-6381-6 and 0-7506-6331-2, 451 pages, US$49.95, £24.99, €36.75 , 2006 .

[43]  S. McCue,et al.  The Extinction Problem for Three-dimensional Inward Solidification , 2005 .

[44]  Timothy J. Moroney,et al.  The effect of surface tension and kinetic undercooling on a radially-symmetric melting problem , 2014, Appl. Math. Comput..

[45]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[46]  Timothy J. Moroney,et al.  Asymptotic and Numerical Results for a Model of Solvent-Dependent Drug Diffusion through Polymeric Spheres , 2011, SIAM J. Appl. Math..

[47]  J. Cohen,et al.  Surface melting on small particles , 1997 .

[48]  Lai,et al.  Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements. , 1996, Physical review letters.

[49]  F. Hua,et al.  Size-dependent melting properties of tin nanoparticles , 2006 .

[50]  Choi,et al.  Size-dependent melting temperature of individual nanometer-sized metallic clusters. , 1990, Physical review. B, Condensed matter.

[51]  Zhenyuan Zhang,et al.  Size-dependent melting of silica-encapsulated gold nanoparticles. , 2002, Journal of the American Chemical Society.

[52]  Sindee L. Simon,et al.  The melting behavior of aluminum nanoparticles , 2007 .

[53]  Y.-Z. Chen,et al.  Thermal effect of surface tension on the inward solidification of spheres , 2002 .

[54]  Brian J Monaghan,et al.  Thermal conductivities of molten metals: Part 1 Pure metals , 1996 .

[55]  M. Wautelet,et al.  Effects of shape on the phase stability of nanoparticles , 2007 .

[56]  S. C. Gupta,et al.  The Classical Stefan Problem: Basic Concepts, Modelling and Analysis , 2017 .

[57]  C. J. Coombes The melting of small particles of lead and indium , 1972 .

[58]  M. Jarrold,et al.  Melting and freezing of metal clusters. , 2011, Annual review of physical chemistry.