Robust weighted fusion Kalman filters for multisensor time-varying systems with uncertain noise variances

This paper addresses the design of robust weighted fusion Kalman filters for multisensor time-varying systems with uncertainties of noise variances. Using the minimax robust estimation principle and the unbiased linear minimum variance (ULMV) optimal estimation rule, the five robust weighted fusion time-varying Kalman filters are presented based on the worst-case conservative systems with the conservative upper bounds of noise variances. The actual filtering error variances or their traces of each fuser are guaranteed to have a minimal upper bound for all the admissible uncertainties of noise variances. A Lyapunov equation approach is presented to prove the robustness of the robust Kalman filters. The concept of robust accuracy is presented and the robust accuracy relations among the local and fused robust Kalman filters are proved. Specially, the corresponding steady-state robust local and fused Kalman filters are also presented for multisensor time-invariant systems, and the convergence in a realization of the local and fused time-varying and steady-state Kalman filters is proved by the dynamic error system analysis (DESA) method and dynamic variance error system analysis (DVESA) method. A simulation example is given to verify the robustness and robust accuracy relations.

[1]  Shu-Li Sun Multi-sensor information fusion white noise filter weighted by scalars based on Kalman predictor , 2004, Autom..

[2]  Shu-Li Sun,et al.  Multi-sensor optimal information fusion Kalman filter , 2004, Autom..

[3]  Yuan Gao,et al.  Sequential covariance intersection fusion Kalman filter , 2012, Inf. Sci..

[4]  Z. Deng,et al.  Information fusion Wiener filter for the multisensor multichannel ARMA signals with time-delayed measurements , 2009 .

[5]  Yunmin Zhu,et al.  Minimax Robust Optimal Estimation Fusion in Distributed Multisensor Systems With Uncertainties , 2010, IEEE Signal Processing Letters.

[6]  W. Niehsen,et al.  Information fusion based on fast covariance intersection filtering , 2002, Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997).

[7]  Uri Shaked,et al.  Robust discrete-time minimum-variance filtering , 1996, IEEE Trans. Signal Process..

[8]  Yunmin Zhu,et al.  The optimality for the distributed Kalman filtering fusion with feedback , 2001, Autom..

[9]  Chenglin Wen,et al.  Optimal sequential Kalman filtering with cross-correlated measurement noises , 2013 .

[10]  Xiaojun Sun,et al.  Optimal and self‐tuning weighted measurement fusion Kalman filters and their asymptotic global optimality , 2010 .

[11]  Yuan Gao,et al.  Self-Tuning Multisensor Weighted Measurement Fusion Kalman Filter , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[12]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[13]  David Zhang,et al.  Improved robust H2 and Hinfinity filtering for uncertain discrete-time systems , 2004, Autom..

[14]  Zi-Li Deng,et al.  Self-tuning distributed measurement fusion Kalman estimator for the multi-channel ARMA signal , 2011, Signal Process..

[15]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[16]  Yuan Gao,et al.  Self-tuning decoupled information fusion Wiener state component filters and their convergence , 2008, Autom..

[17]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[18]  Ming Zeng,et al.  Distributed weighted robust Kalman filter fusion for uncertain systems with autocorrelated and cross-correlated noises , 2013, Inf. Fusion.

[19]  Chuang Li,et al.  Multi-model information fusion Kalman filtering and white noise deconvolution , 2010, Inf. Fusion.

[20]  C. Ran,et al.  Self-Tuning Decoupled Fusion Kalman Predictor and Its Convergence Analysis , 2009, IEEE Sensors Journal.

[21]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[22]  C. J. Harris,et al.  Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion , 2001 .

[23]  Ran Chen Correlated Measurement Fusion Steady-state Kalman Filtering Algorithms and Their Optimality , 2008 .

[24]  Yuan Gao,et al.  New approach to information fusion steady-state Kalman filtering , 2005, Autom..

[25]  Zidong Wang Optimal and robust estimation. F. Lewis, L. Xie and D. Popa, CRC Press, Boca Raton, FL, 2007 , 2009 .

[26]  Jeffrey K. Uhlmann,et al.  General Decentralized Data Fusion With Covariance Intersection (CI) , 2001 .

[27]  Yonina C. Eldar,et al.  A Minimax Chebyshev Estimator for Bounded Error Estimation , 2008, IEEE Transactions on Signal Processing.

[28]  Fuwen Yang,et al.  Decentralized robust Kalman filtering for uncertain stochastic systems over heterogeneous sensor networks , 2008, Signal Process..

[29]  Tomomichi Hagiwara,et al.  A dilated LMI approach to robust performance analysis of linear time-invariant uncertain systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[30]  E. Kamen,et al.  Introduction to Optimal Estimation , 1999 .

[31]  N. A. Carlson Federated square root filter for decentralized parallel processors , 1990 .

[32]  Lihua Xie,et al.  Design and analysis of discrete-time robust Kalman filters , 2002, Autom..

[33]  Jeffrey K. Uhlmann,et al.  A non-divergent estimation algorithm in the presence of unknown correlations , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[34]  Sun You-xian Centralized fusion estimation for uncertain multisensor system based on LMI method , 2006 .

[35]  H. Sriyananda,et al.  A simple method for the control of divergence in Kalman-filter algorithms , 1972 .

[36]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[37]  Lihua Xie,et al.  Robust Kalman filtering for uncertain discrete-time systems , 1994, IEEE Trans. Autom. Control..

[38]  Hongsheng Xi,et al.  The guaranteed estimation performance filter for discrete-time descriptor systems with uncertain noise , 1997, Int. J. Syst. Sci..

[39]  Y. Soh,et al.  Robust Kalman filtering for discrete state-delay systems , 2000 .

[40]  Yuan Gao,et al.  The accuracy comparison of multisensor covariance intersection fuser and three weighting fusers , 2013, Inf. Fusion.

[41]  Jie Zhou,et al.  The optimal robust finite-horizon Kalman filtering for multiple sensors with different stochastic failure rates , 2013, Appl. Math. Lett..

[42]  Jeffrey K. Uhlmann,et al.  Using covariance intersection for SLAM , 2007, Robotics Auton. Syst..