Physical Interactions and Functional Relationships of Neuroligin 2 and Midbrain Serotonin Transporters

The neurotransmitter serotonin [5-hydroxytryptamine (5-HT)] modulates many key brain functions including those subserving sensation, emotion, reward, and cognition. Efficient clearance of 5-HT after release is achieved by the antidepressant-sensitive 5-HT transporter (SERT, SLC6A4). To identify novel SERT regulators, we pursued a proteomic analysis of mouse midbrain SERT complexes, evaluating findings in the context of prior studies that established a SERT-linked transcriptome. Remarkably, both efforts converged on a relationship of SERT with the synaptic adhesion protein neuroligin 2 (NLGN2), a post-synaptic partner for presynaptic neurexins, and a protein well-known to organize inhibitory GABAergic synapses. Western blots of midbrain reciprocal immunoprecipitations confirmed SERT/NLGN2 associations, and also extended to other NLGN2 associated proteins [e.g., α-neurexin (NRXN), gephyrin]. Midbrain SERT/NLGN2 interactions were found to be Ca2+-independent, supporting cis vs. trans-synaptic interactions, and were absent in hippocampal preparations, consistent with interactions arising in somatodendritic compartments. Dual color in situ hybridization confirmed co-expression of Tph2 and Nlgn2 mRNA in the dorsal raphe, with immunocytochemical studies confirming SERT:NLGN2 co-localization in raphe cell bodies but not axons. Consistent with correlative mRNA expression studies, loss of NLGN2 expression in Nlgn2 null mice produced significant reductions in midbrain and hippocampal SERT expression and function. Additionally, dorsal raphe 5-HT neurons from Nlgn2 null mice exhibit reduced excitability, a loss of GABAA receptor-mediated IPSCs, and increased 5-HT1A autoreceptor sensitivity. Finally, Nlgn2 null mice display significant changes in behaviors known to be responsive to SERT and/or 5-HT receptor manipulations. We discuss our findings in relation to the possible coordination of intrinsic and extrinsic regulation afforded by somatodendritic SERT:NLGN2 complexes.

[1]  A. Lüthi,et al.  Neuroligin 2 deletion alters inhibitory synapse function and anxiety-associated neuronal activation in the amygdala , 2016, Neuropharmacology.

[2]  J. Lambert,et al.  Localisation and stress-induced plasticity of GABAA receptor subunits within the cellular networks of the mouse dorsal raphe nucleus , 2015, Brain Structure and Function.

[3]  Noah H. Green,et al.  Photoperiod Programs Dorsal Raphe Serotonergic Neurons and Affective Behaviors , 2015, Current Biology.

[4]  C. Hamani,et al.  High‐frequency stimulation of the medial prefrontal cortex decreases cellular firing in the dorsal raphe , 2015, The European journal of neuroscience.

[5]  C. Sandi,et al.  Hippocampal neuroligin-2 links early-life stress with impaired social recognition and increased aggression in adult mice , 2015, Psychoneuroendocrinology.

[6]  T. Südhof,et al.  Conditional neuroligin-2 knockout in adult medial prefrontal cortex links chronic changes in synaptic inhibition to cognitive impairments , 2015, Molecular Psychiatry.

[7]  R. Corradetti,et al.  Nonexocytotic serotonin release tonically suppresses serotonergic neuron activity , 2015, The Journal of general physiology.

[8]  S. Hernández-López,et al.  Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor. , 2014, Journal of neurophysiology.

[9]  B. Dupont,et al.  Neurodevelopmental delays and macrocephaly in 17p13.1 microduplication syndrome , 2014, American journal of medical genetics. Part A.

[10]  G. Silberberg,et al.  A Whole-Brain Atlas of Inputs to Serotonergic Neurons of the Dorsal and Median Raphe Nuclei , 2014, Neuron.

[11]  Liqun Luo,et al.  Presynaptic Partners of Dorsal Raphe Serotonergic and GABAergic Neurons , 2014, Neuron.

[12]  Y. Kuroda,et al.  De novo duplication of 17p13.1–p13.2 in a patient with intellectual disability and obesity , 2014, American journal of medical genetics. Part A.

[13]  Thomas C. Südhof,et al.  Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing , 2014, Proceedings of the National Academy of Sciences.

[14]  R. Williams,et al.  Evaluation of heritable determinants of blood and brain serotonin homeostasis using recombinant inbred mice , 2014, Genes, brain, and behavior.

[15]  R. Williams,et al.  Quantitative trait loci mapping and gene network analysis implicate protocadherin‐15 as a determinant of brain serotonin transporter expression , 2014, Genes, brain, and behavior.

[16]  M. Soiza-Reilly,et al.  Presynaptic gating of excitation in the dorsal raphe nucleus by GABA , 2013, Proceedings of the National Academy of Sciences.

[17]  T. Freund,et al.  Neuroligin 2 Is Expressed in Synapses Established by Cholinergic Cells in the Mouse Brain , 2013, PloS one.

[18]  J. Kleinman,et al.  Converging evidence for the association of functional genetic variation in the serotonin receptor 2a gene with prefrontal function and olanzapine treatment. , 2013, JAMA psychiatry.

[19]  Mark J. Harris,et al.  Developmental delays and reduced pup ultrasonic vocalizations but normal sociability in mice lacking the postsynaptic cell adhesion protein neuroligin2 , 2013, Behavioural Brain Research.

[20]  K. Lesch,et al.  Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT) neurons in mice with altered 5-HT homeostasis , 2013, Front. Pharmacol..

[21]  R. Corradetti,et al.  Suppression of Serotonin Neuron Firing Increases Aggression in Mice , 2013, The Journal of Neuroscience.

[22]  C. Lowry,et al.  Development×environment interactions control tph2 mRNA expression , 2013, Neuroscience.

[23]  H. Bellen,et al.  Drosophila Neuroligin 2 is Required Presynaptically and Postsynaptically for Proper Synaptic Differentiation and Synaptic Transmission , 2012, The Journal of Neuroscience.

[24]  Lesley A. Colgan,et al.  Action Potential-Independent and Pharmacologically Unique Vesicular Serotonin Release from Dendrites , 2012, The Journal of Neuroscience.

[25]  P. Gaspar,et al.  Probing the diversity of serotonin neurons , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[26]  L. Descarries,et al.  Effects of the antidepressant fluoxetine on the subcellular localization of 5-HT1A receptors and SERT , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  J. Sutcliffe,et al.  Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior , 2012, Proceedings of the National Academy of Sciences.

[28]  A. Brusco,et al.  790 Kb microduplication in chromosome band 17p13.1 associated with intellectual disability, afebrile seizures, dysmorphic features, diabetes, and hypothyroidism. , 2012, European journal of medical genetics.

[29]  P. Scheiffele,et al.  Distinct mechanisms regulate GABAA receptor and gephyrin clustering at perisomatic and axo‐axonic synapses on CA1 pyramidal cells , 2011, The Journal of physiology.

[30]  J. Sutcliffe,et al.  Colocalization and Regulated Physical Association of Presynaptic Serotonin Transporters with A3 Adenosine Receptors , 2011, Molecular Pharmacology.

[31]  G. Torres,et al.  Proteins interacting with monoamine transporters: current state and future challenges. , 2011, Biochemistry.

[32]  Ding-Lieh Liao,et al.  Identification and functional characterization of rare mutations of the neuroligin-2 gene (NLGN2) associated with schizophrenia. , 2011, Human molecular genetics.

[33]  Laurent Mottron,et al.  Truncating mutations in NRXN2 and NRXN1 in autism spectrum disorders and schizophrenia , 2011, Human Genetics.

[34]  K. Lesch,et al.  Looking on the Bright Side of Serotonin Transporter Gene Variation , 2011, Biological Psychiatry.

[35]  R. Blakely,et al.  Transgenic elimination of high-affinity antidepressant and cocaine sensitivity in the presynaptic serotonin transporter , 2011, Proceedings of the National Academy of Sciences.

[36]  E. Gundelfinger,et al.  Somatodendritic serotonin release and re-uptake in mouse embryonic stem cell-derived serotonergic neurons , 2010, Neurochemistry International.

[37]  J. Launay,et al.  MiR-16 Targets the Serotonin Transporter: A New Facet for Adaptive Responses to Antidepressants , 2010, Science.

[38]  R. Blakely,et al.  Interleukin-1 Receptor Activation by Systemic Lipopolysaccharide Induces Behavioral Despair Linked to MAPK Regulation of CNS Serotonin Transporters , 2010, Neuropsychopharmacology.

[39]  K. Lesch,et al.  Social status and day-to-day behaviour of male serotonin transporter knockout mice , 2010, Behavioural Brain Research.

[40]  T. Südhof,et al.  Neuroligin-2 Deletion Selectively Decreases Inhibitory Synaptic Transmission Originating from Fast-Spiking but Not from Somatostatin-Positive Interneurons , 2009, The Journal of Neuroscience.

[41]  S. Rauch,et al.  Association of SLC6A4 variants with obsessive-compulsive disorder in a large multi-center US family study , 2009, Molecular Psychiatry.

[42]  M. Hoon,et al.  Neuroligin 2 Drives Postsynaptic Assembly at Perisomatic Inhibitory Synapses through Gephyrin and Collybistin , 2009, Neuron.

[43]  Carrie C Buchanan,et al.  cGMP-dependent protein kinase Iα associates with the antidepressant-sensitive serotonin transporter and dictates rapid modulation of serotonin uptake , 2009, Molecular Brain.

[44]  T. Südhof,et al.  Increased anxiety‐like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2 , 2009, Genes, brain, and behavior.

[45]  J. Sutcliffe,et al.  Enhanced activity of human serotonin transporter variants associated with autism , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[46]  Randy D Blakely,et al.  Going with the Flow: Trafficking‐Dependent and ‐Independent Regulation of Serotonin Transport , 2008, Traffic.

[47]  M. Zhuo,et al.  Synaptic Imbalance, Stereotypies, and Impaired Social Interactions in Mice with Altered Neuroligin 2 Expression , 2008, The Journal of Neuroscience.

[48]  E. Cook,et al.  Interactions between integrin alphaIIbbeta3 and the serotonin transporter regulate serotonin transport and platelet aggregation in mice and humans. , 2008, The Journal of clinical investigation.

[49]  B. Honig,et al.  Crystal structure of the extracellular cholinesterase-like domain from neuroligin-2 , 2008, Proceedings of the National Academy of Sciences.

[50]  Thomas C. Südhof,et al.  Structures of Neuroligin-1 and the Neuroligin-1/Neurexin-1β Complex Reveal Specific Protein-Protein and Protein-Ca2+ Interactions , 2007, Neuron.

[51]  M. Millan,et al.  Physical interaction between the serotonin transporter and neuronal nitric oxide synthase underlies reciprocal modulation of their activity , 2007, Proceedings of the National Academy of Sciences.

[52]  Sanbing Shen,et al.  Increased Expression of the 5-HT Transporter Confers a Low- Anxiety Phenotype Linked to Decreased 5-HT Transmission , 2006, The Journal of Neuroscience.

[53]  R. Blakely,et al.  Serotonin-, Protein Kinase C-, and Hic-5-associated Redistribution of the Platelet Serotonin Transporter* , 2006, Journal of Biological Chemistry.

[54]  S. E. Gartside,et al.  Firing of 5-HT neurones in the dorsal and median raphe nucleus in vitro shows differential α1-adrenoceptor and 5-HT1A receptor modulation , 2006, Neurochemistry International.

[55]  J. Sutcliffe,et al.  Allelic heterogeneity at the serotonin transporter locus (SLC6A4) confers susceptibility to autism and rigid-compulsive behaviors. , 2005, American journal of human genetics.

[56]  A. Andrews,et al.  Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression , 2004, Journal of Neuroscience Methods.

[57]  Ann Marie Craig,et al.  Neurexins Induce Differentiation of GABA and Glutamate Postsynaptic Specializations via Neuroligins , 2004, Cell.

[58]  J. Abrams,et al.  Anatomic and Functional Topography of the Dorsal Raphe Nucleus , 2004, Annals of the New York Academy of Sciences.

[59]  L. Kirby,et al.  Median and dorsal raphe neurons are not electrophysiologically identical. , 2004, Journal of neurophysiology.

[60]  C. Douglas Looking on the bright side , 2003, BMJ : British Medical Journal.

[61]  B. Greenberg,et al.  Serotonin transporter missense mutation associated with a complex neuropsychiatric phenotype , 2003, Molecular Psychiatry.

[62]  D. Murphy,et al.  Exaggerated effect of fluvoxamine in heterozygote serotonin transporter knockout mice , 2003, Journal of neurochemistry.

[63]  C. Wichems,et al.  Brain region‐specific alterations of 5‐HT2A and 5‐HT2C receptors in serotonin transporter knockout mice , 2003, Journal of neurochemistry.

[64]  D. Murphy,et al.  Evaluation of Antidepressant-related Behavioral Responses in Mice Lacking the Serotonin Transporter , 2002, Neuropsychopharmacology.

[65]  R. Tao,et al.  GABAergic and Glutamatergic Afferents in the Dorsal Raphe Nucleus Mediate Morphine-Induced Increases in Serotonin Efflux in the Rat Central Nervous System , 2002, Journal of Pharmacology and Experimental Therapeutics.

[66]  P. Celada,et al.  Control of Dorsal Raphe Serotonergic Neurons by the Medial Prefrontal Cortex: Involvement of Serotonin-1A, GABAA, and Glutamate Receptors , 2001, The Journal of Neuroscience.

[67]  J. Yates,et al.  An automated multidimensional protein identification technology for shotgun proteomics. , 2001, Analytical chemistry.

[68]  K. Lesch,et al.  Reduction in the Density and Expression, But Not G-Protein Coupling, of Serotonin Receptors (5-HT1A) in 5-HT Transporter Knock-Out Mice: Gender and Brain Region Differences , 2000, The Journal of Neuroscience.

[69]  R. Blakely,et al.  Cocaine and Antidepressant-Sensitive Biogenic Amine Transporters Exist in Regulated Complexes with Protein Phosphatase 2A , 2000, The Journal of Neuroscience.

[70]  K. Lesch,et al.  Altered expression and functions of serotonin 5‐HT1A and 5‐HT1B receptors in knock‐out mice lacking the 5‐HT transporter , 2000, The European journal of neuroscience.

[71]  R. Fetter,et al.  Neuroligin Expressed in Nonneuronal Cells Triggers Presynaptic Development in Contacting Axons , 2000, Cell.

[72]  R. Hen,et al.  5‐HT1A and 5‐HT1B receptors control the firing of serotoninergic neurons in the dorsal raphe nucleus of the mouse: studies in 5‐HT1B knock‐out mice , 1999, The European journal of neuroscience.

[73]  F. Zhou,et al.  Differential polarization of serotonin transporters in axons versus soma–dendrites: an immunogold electron microscopy study , 1999, Neuroscience.

[74]  K. Lesch,et al.  Adaptive changes of serotonin 5-HT2A receptors in mice lacking the serotonin transporter , 1999, Neuroscience Letters.

[75]  E. Bagdy,et al.  Feedback Stimulation of Somatodendritic Serotonin Release: A 5-HT3 Receptor-Mediated Effect in the Raphe Nuclei of the Rat , 1998, Brain Research Bulletin.

[76]  C. Montigny,et al.  Role of Somatodendritic 5‐HT Autoreceptors in Modulating 5‐HT Neurotransmission a , 1998, Annals of the New York Academy of Sciences.

[77]  R. Wightman,et al.  Quantitative Evaluation of 5-Hydroxytryptamine (Serotonin) Neuronal Release and Uptake: An Investigation of Extrasynaptic Transmission , 1998, The Journal of Neuroscience.

[78]  T. Südhof,et al.  Binding Properties of Neuroligin 1 and Neurexin 1β Reveal Function as Heterophilic Cell Adhesion Molecules* , 1997, The Journal of Biological Chemistry.

[79]  J D Clements,et al.  Detection of spontaneous synaptic events with an optimally scaled template. , 1997, Biophysical journal.

[80]  K. Lesch,et al.  Association of Anxiety-Related Traits with a Polymorphism in the Serotonin Transporter Gene Regulatory Region , 1996, Science.

[81]  T. Südhof,et al.  Structures, Alternative Splicing, and Neurexin Binding of Multiple Neuroligins (*) , 1996, The Journal of Biological Chemistry.

[82]  A. Levey,et al.  Identification and characterization of antidepressant-sensitive serotonin transporter proteins using site-specific antibodies , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[83]  J. Hensler,et al.  Quantitative autoradiography of the serotonin transporter to assess the distribution of serotonergic projections from the dorsal raphe nucleus , 1994, Synapse.

[84]  M. Kuhar,et al.  Recognition of Dopamine Transporters by Antipeptide Antibodies , 1993, Molecular and Cellular Neuroscience.

[85]  O. Elroy-Stein,et al.  Heterologously expressed serotonin 1A receptors couple to muscarinic K+ channels in heart. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[86]  M. Greaves,et al.  A one-step purification of membrane proteins using a high efficiency immunomatrix. , 1982, The Journal of biological chemistry.

[87]  D. Rosielle,et al.  Psychiatry , 1905, NeuroImage.

[88]  K. Amirdelfan,et al.  High-Frequency Stimulation , 2018 .

[89]  Ding-Lieh Liao,et al.  Identification and functional characterization of rare mutations of the neuroligin-2 gene ( NLGN 2 ) associated with schizophrenia , 2011 .

[90]  J. Zeman,et al.  quantitative evaluation of by , 2010 .

[91]  Carrie C Buchanan,et al.  Cgmp-dependent Protein Kinase I Associates with the Antidepressant-sensitive Serotonin Transporter and Dictates Rapid Modulation of Serotonin Uptake , 2008 .

[92]  E. Azmitia Serotonin and brain: evolution, neuroplasticity, and homeostasis. , 2007, International review of neurobiology.

[93]  T. Svensson,et al.  The 5-HT1A receptor antagonist (S)-UH-301 decreases dopamine release in the rat nucleus accumbens and striatum , 2005, Journal of Neural Transmission.

[94]  M. Rietschel,et al.  Serotonin transporter gene and schizophrenia: evidence for association/linkage disequilibrium in families with affected siblings , 2000, Molecular Psychiatry.

[95]  G. Feng,et al.  Cell-type Specific Optogenetic Mice for Dissecting Neural Circuitry Function Nih Public Access Author Manuscript , 2022 .