Constitutive modelling of the time-dependent behaviour of partially saturated rocks

Abstract This paper presents a new constitutive model for the time-dependent behaviour of partially saturated rocks. Hydromechanical coupling is formulated in the framework of porous media. Viscoplastic and isotropic damage laws are extended from the original Lemaitre’s model using an equivalent pore pressure and an effective stress variable. The model contains a moderate number of parameters which can be identified from the results of typical laboratory experiments. This model can be used for simulating both saturated and unsaturated rocks in a unified manner. It is validated by experimental data obtained from some rocks. Its thermodynamic consistency is also discussed.

[1]  Q. Pham Effets de la désaturation et de la resaturation sur l'argilite dans les ouvrages souterrains , 2006 .

[2]  Branko Ladanyi,et al.  Time-dependent Response of Rock Around Tunnels , 1993 .

[3]  Jean Vaunat,et al.  Revisiting the thermodynamics of hardening plasticity for unsaturated soils , 2010, 1010.2598.

[4]  A. Cheng,et al.  Fundamentals of Poroelasticity , 1993 .

[5]  Xia-Ting Feng,et al.  Modeling of anisotropic damage and creep deformation in brittle rocks , 2006 .

[6]  I. F. Collins,et al.  The concept of stored plastic work or frozen elastic energy in soil mechanics , 2005 .

[7]  Erling Nordlund,et al.  The stress-strain behaviour of rock material related to fracture under compression , 1998 .

[8]  Chun-liang Zhang,et al.  Experimental study of the hydro-mechanical behaviour of the Callovo-Oxfordian argillite , 2004 .

[9]  F. Pellet,et al.  A viscoplastic model including anisotropic damage for the time dependent behaviour of rock , 2005 .

[10]  G. Habibagahi,et al.  Effective Stress in Unsaturated Soils: A Thermodynamic Approach Based on the Interfacial Energy and Hydromechanical Coupling , 2012, Transport in Porous Media.

[11]  Patrick Dangla,et al.  Adaptation of existing behaviour models to unsaturated states: application to CJS model , 2005 .

[12]  Emmanuel M Detournay,et al.  Elastoplastic model of a deep tunnel for a rock with variable dilatancy , 1986 .

[13]  C. H. Scholz,et al.  Mechanism of creep in brittle rock , 1968 .

[14]  Michael Ortiz,et al.  A constitutive theory for the inelastic behavior of concrete , 1985 .

[15]  R. Charlier,et al.  An unsaturated hydro-mechanical modelling of two in-situ experiments in Callovo-Oxfordian argillite , 2013 .

[16]  G. Armand,et al.  Modeling the viscoplastic and damage behavior in deep argillaceous rocks , 2011 .

[17]  C. Callari,et al.  Hyperelastic Multiphase Porous Media with Strain-Dependent Retention Laws , 2011 .

[18]  N. D. Cristescu,et al.  A general constitutive equation for transient and stationary creep of rock salt , 1993 .

[19]  Jian-Fu Shao,et al.  Pétrofabrique et propriétés mécaniques des argilites , 2006 .

[20]  Jonny Rutqvist,et al.  Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository - BMT1 of the DECOVALEX III project. Part 3: Effects of THM coupling in sparsely fractured rocks , 2004 .

[21]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[22]  D. Fredlund,et al.  Soil Mechanics for Unsaturated Soils , 1993 .

[23]  J. C. Jaeger,et al.  Fundamentals of rock mechanics , 1969 .

[24]  De’an Sun,et al.  Analytical modeling of a deep tunnel inside a poro-viscoplastic rock mass accounting for different stages of its life cycle , 2014 .

[25]  E. Z. Lajtai,et al.  The effect of water on the time-dependent deformation and fracture of a granite , 1987 .

[26]  H. Wong,et al.  Thermodynamically consistent modelling of viscoplasticity and damage coupling in saturated rocks , 2016 .

[27]  Jian-Fu Shao,et al.  A coupled elastoplastic damage model for semi-brittle materials and extension to unsaturated conditions , 2006 .

[28]  Antonio Gens,et al.  A constitutive model for partially saturated soils , 1990 .

[29]  Tsutomu Yamaguchi,et al.  A non-associated viscoplastic model for the behaviour of granite in triaxial compression , 2001 .

[30]  Dragan Grgic,et al.  Constitutive modelling of the elastic–plastic, viscoplastic and damage behaviour of hard porous rocks within the unified theory of inelastic flow , 2016 .

[31]  Philip G. Meredith,et al.  Time-dependent brittle creep in Darley Dale sandstone , 2009 .

[32]  Fan Zhang,et al.  Modeling the influence of water content on the mechanical behavior of Callovo–Oxfordian argillite , 2013 .

[33]  E. Alonso,et al.  Considerations of the dilatancy angle in rocks and rock masses , 2005 .

[34]  R. Borst,et al.  Non-Associated Plasticity for Soils, Concrete and Rock , 1984 .

[35]  Chloé Arson,et al.  A thermodynamically consistent framework for saturated viscoplastic rock-materials subject to damage , 2012 .

[36]  Weiya Xu,et al.  Experimental Researches on Long-Term Strength of Granite Gneiss , 2015 .

[37]  Philip G. Meredith,et al.  Time-dependent cracking and brittle creep in crustal rocks: A review , 2013 .

[38]  P. Perzyna Fundamental Problems in Viscoplasticity , 1966 .

[39]  Giovanni Battista Barla,et al.  New Viscoplastic Model for Design Analysis of Tunnels in Squeezing Conditions , 2009 .

[40]  Albert Giraud,et al.  Time-dependent behaviour of deep clays , 1996 .

[41]  N. D. Cristescu,et al.  A procedure to determine nonassociated constitutive equations for geomaterials , 1994 .

[42]  Dragan Grgic,et al.  A short- and long-term rheological model to understand the collapses of iron mines in Lorraine, France , 2003 .

[43]  Jean-Michel Pereira,et al.  A viscoplastic constitutive model for unsaturated geomaterials , 2013 .

[44]  Annan Zhou,et al.  A coupled poroplastic damage model accounting for cracking effects on both hydraulic and mechanical properties of unsaturated media , 2016 .

[45]  Qi-Zhi Zhu,et al.  Modeling of creep in rock materials in terms of material degradation , 2003 .

[46]  J. Shao,et al.  A unified elastic–plastic and viscoplastic damage model for quasi-brittle rocks , 2008 .

[47]  J. Shao Poroelastic behaviour of brittle rock materials with anisotropic damage , 1998 .

[48]  Robert Charlier,et al.  Coupled modeling of Excavation Damaged Zone in Boom clay: Strain localization in rock and distribution of contact pressure on the gallery’s lining , 2015 .

[49]  Guy T. Houlsby,et al.  Application of thermomechanical principles to the modelling of geotechnical materials , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[50]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[51]  P. Berest,et al.  Creep behavior of Bure clayey rock , 2004 .

[52]  C. Callari,et al.  Finite element methods for unsaturated porous solids and their application to dam engineering problems , 2009 .

[53]  Zhengmeng Hou,et al.  Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities , 2003 .

[54]  Sheng-Qi Yang,et al.  Influences of pore pressure on short-term and creep mechanical behavior of red sandstone , 2014 .

[55]  D. Hoxha,et al.  Modelling long-term behaviour of a natural gypsum rock , 2005 .

[56]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[57]  R. Cabrillac,et al.  Poroplastic damage model for claystones , 2004 .

[58]  Patrick Lebon,et al.  The excavation damaged zone in clay formations time-dependent behaviour and influence on performance assessment , 2007 .