Investigating Cepheid ℓ Carinae's cycle-to-cycle variations via contemporaneous velocimetry and interferometry

Baade-Wesselink-type (BW) techniques enable geometric distance measurements of Cepheid variable stars in the Galaxy and the Magellanic clouds. The leading uncertainties involved concern projection factors required to translate observed radial velocities (RVs) to pulsational velocities and recently discovered modulated variability. We carried out an unprecedented observational campaign involving long-baseline interferometry (VLTI/PIONIER) and spectroscopy (Euler/Coralie) to search for modulated variability in the long-period (P $\sim$ 35.5 d) Cepheid Carinae. We determine highly precise angular diameters from squared visibilities and investigate possible differences between two consecutive maximal diameters, $\Delta_{\rm{max}} \Theta$. We characterize the modulated variability along the line-of-sight using 360 high-precision RVs. Here we report tentative evidence for modulated angular variability and confirm cycle-to-cycle differences of $\ell$ Carinae's RV variability. Two successive maxima yield $\Delta_{\rm{max}} \Theta$ = 13.1 $\pm$ 0.7 (stat.) {\mu}as for uniform disk models and 22.5 $\pm$ 1.4 (stat.) {\mu}as (4% of the total angular variation) for limb-darkened models. By comparing new RVs with 2014 RVs we show modulation to vary in strength. Barring confirmation, our results suggest the optical continuum (traced by interferometry) to be differently affected by modulation than gas motions (traced by spectroscopy). This implies a previously unknown time-dependence of projection factors, which can vary by 5% between consecutive cycles of expansion and contraction. Additional interferometric data are required to confirm modulated angular diameter variations. By understanding the origin of modulated variability and monitoring its long-term behavior, we aim to improve the accuracy of BW distances and further the understanding of stellar pulsations.

[1]  S. Ridgway,et al.  Cepheid distances from the SpectroPhoto-Interferometry of Pulsating Stars (SPIPS) - Application to the prototypes δ Cephei and η Aquilae , 2015, 1510.01940.

[2]  E. Poretti,et al.  CoRoT space photometry of seven Cepheids , 2015, 1508.07639.

[3]  H. McAlister,et al.  Robust high-contrast companion detection from interferometric observations - The CANDID algorithm and an application to six binary Cepheids , 2015, 1505.02715.

[4]  L. Macri,et al.  CEPHEID VARIABLES IN THE MASER-HOST GALAXY NGC 4258 , 2015, 1503.07953.

[5]  N. Mowlavi,et al.  REVEALING δ CEPHEI’S SECRET COMPANION AND INTRIGUING PAST , 2015, 1503.04116.

[6]  S. E. Persson,et al.  THE CARNEGIE HUBBLE PROGRAM: THE DISTANCE AND STRUCTURE OF THE SMC AS REVEALED BY MID-INFRARED OBSERVATIONS OF CEPHEIDS , 2015, 1502.06995.

[7]  Observations of Cepheids with the MOST satellite: contrast between pulsation modes , 2014, 1411.1730.

[8]  S. Kanbur,et al.  LARGE MAGELLANIC CLOUD NEAR-INFRARED SYNOPTIC SURVEY. I. CEPHEID VARIABLES AND THE CALIBRATION OF THE LEAVITT LAW , 2014, 1412.1511.

[9]  Luigi Andolfato,et al.  VLTI status update: a decade of operations and beyond , 2014, Astronomical Telescopes and Instrumentation.

[10]  R. Anderson Tuning in on Cepheids: Radial velocity amplitude modulations - A source of systematic uncertainty for Baade-Wesselink distances , 2014, 1406.2605.

[11]  Stefano Casertano,et al.  PARALLAX BEYOND A KILOPARSEC FROM SPATIALLY SCANNING THE WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2014, 1401.0484.

[12]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[13]  Lincoln Greenhill,et al.  TOWARD A NEW GEOMETRIC DISTANCE TO THE ACTIVE GALAXY NGC 4258. III. FINAL RESULTS AND THE HUBBLE CONSTANT , 2013, 1307.6031.

[14]  Hilding R. Neilson,et al.  Spherically-symmetric model stellar atmospheres and limb darkening - I. Limb-darkening laws, gravity-darkening coefficients and angular diameter corrections for red giant stars , 2013, 1305.1311.

[15]  N. Mowlavi,et al.  Populations of rotating stars. - I. Models from 1.7 to 15 Msun at Z = 0.014, 0.006, and 0.002 with {\Omega}/{\Omega}crit between 0 and 1 , 2013, 1303.2321.

[16]  M. Groenewegen Baade-Wesselink distances to Galactic and Magellanic Cloud Cepheids and the effect of metallicity , 2012, 1212.5478.

[17]  N. Mowlavi,et al.  Cepheids in open clusters: an 8D all-sky census , 2012, 1212.5119.

[18]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[19]  S. Perruchot,et al.  SOPHIE+: First results of an octagonal-section fiber for high-precision radial velocity measurements , 2012, 1211.4785.

[20]  Wendy L. Freedman,et al.  CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.

[21]  L. Szabados,et al.  Period and light‐curve fluctuations of the Kepler Cepheid V1154 Cygni , 2012 .

[22]  Marcelo Emilio,et al.  MEASURING THE SOLAR RADIUS FROM SPACE DURING THE 2003 AND 2006 MERCURY TRANSITS , 2012, 1203.4898.

[23]  L. Verde,et al.  The Hubble constant and new discoveries in cosmology , 2012, 1202.4459.

[24]  N. Mowlavi,et al.  Grids of stellar models with rotation - I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014) , 2011, 1110.5049.

[25]  Potsdam,et al.  Calibrating The Cepheid Period-Luminosity Relation From The Infrared Surface Brightness Technique I. The P-Factor, The Milky Way Relations, And A Universal K-Band Relation , 2011, 1109.2017.

[26]  G. Montagnier,et al.  PIONIER: a 4-telescope visitor instrument at VLTI , 2011, 1109.1918.

[27]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[28]  D. Graczyk,et al.  THE DISTRIBUTION OF THE ELEMENTS IN THE GALACTIC DISK. II. AZIMUTHAL AND RADIAL VARIATION IN ABUNDANCES FROM CEPHEIDS , 2011 .

[29]  Olivier Chesneau,et al.  Building the 'JMMC Stellar Diameters Catalog' using SearchCal , 2010, Astronomical Telescopes + Instrumentation.

[30]  Pierre Kervella,et al.  The circumstellar envelopes of the Cepheids $\mathsf{\ell}$ Carinae and RS Puppis - Comparative study in the infrared with Spitzer, VLT/VISIR, and VLTI/MIDI , 2009, 0902.1588.

[31]  P. Tuthill,et al.  Observations of the pulsation of the Cepheid l Car with the Sydney University Stellar Interferometer , 2008, 0812.4791.

[32]  S. Lafrasse,et al.  LITpro: a model fitting software for optical interferometry , 2008, Astronomical Telescopes + Instrumentation.

[33]  M. Groenewegen Baade-Wesselink distances and the effect of metallicity in classical cepheids , 2008, 0807.1269.

[34]  C. D. Laney,et al.  Cepheid parallaxes and the Hubble constant , 2007, 0705.1592.

[35]  W. Freedman,et al.  Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations , 2006, astro-ph/0612465.

[36]  L. Macri,et al.  A New Cepheid Distance to the Maser-Host Galaxy NGC 4258 and Its Implications for the Hubble Constant , 2006, astro-ph/0608211.

[37]  G. Zins,et al.  SearchCal: a Virtual Observatory tool for searching calibrators in optical long-baseline interferometry II. The faint-object case , 2006, astro-ph/0607026.

[38]  Pascal Bordé,et al.  A catalog of bright calibrator stars for 200-m baseline near-infrared stellar interferometry , 2004, astro-ph/0412251.

[39]  D. Bersier,et al.  Cepheid distances from infrared long-baseline interferometry III. Calibration of the surface brightness-color relations , 2004 .

[40]  D. Bersier,et al.  Self consistent modelling of the projection factor for interferometric distance determination , 2004 .

[41]  D. Bersier,et al.  Cepheid distances from infrared long-baseline interferometry: II. Calibration of the period-radius and period-luminosity relations , 2004, astro-ph/0404179.

[42]  D. Bersier,et al.  The Angular Size of the Cepheid ℓ Carinae: A Comparison of the Interferometric and Surface Brightness Techniques , 2004, astro-ph/0402244.

[43]  O. Paris,et al.  The effect of metallicity on the Cepheid Period-Luminosity relation from a Baade-Wesselink analysis of Cepheids in the Galaxy and in the Small Magellanic Cloud , 2004, astro-ph/0401211.

[44]  D. Bersier,et al.  Cepheid distances from infrared long-baseline interferometry - I. VINCI/VLTI observations of seven Galactic Cepheids , 2003, astro-ph/0311525.

[45]  L. Lindegren,et al.  The fundamental definition of "radial velocity'' , 2003, astro-ph/0302522.

[46]  G. Perrin,et al.  A catalogue of calibrator stars for long baseline stellar interferometry , 2002 .

[47]  L. Eyer,et al.  New periodic variables from the Hipparcos epoch photometry , 2001, astro-ph/0112194.

[48]  F. Bouchy,et al.  Fundamental photon noise limit to radial velocity measurements , 2001 .

[49]  W. A. Traub,et al.  The angular diameter and distance of the Cepheid ζ Geminorum , 2001, astro-ph/0102359.

[50]  Robert B. Hindsley,et al.  Astrophysical Quantities of Cepheid Variables Measured with the Navy Prototype Optical Interferometer , 2000 .

[51]  J. Armstrong,et al.  Astrophysical Quantities of Cepheid Variables Measured with the Navy Prototype Optical Interferometer , 2000, astro-ph/0009497.

[52]  M. Feast,et al.  The Cepheid period-luminosity zero-point from Hipparcos trigonometrical parallaxes† , 1997 .

[53]  Michel Mayor,et al.  ELODIE: A spectrograph for accurate radial velocity measurements , 1996 .

[54]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[55]  K. A. Venn,et al.  On Spectral Line Formation and Measurement in Cepheids: Implications to Distance Determination , 1995 .

[56]  W. Baade,et al.  Über eine Möglichkeit, die Pulsationstheorie der δ Cephei‐Veränderlichen zu prüfen , 1926 .

[57]  F. A. Lindemann Note on the Pulsation Theory of Cepheid Variables , 1918 .