Functional and diffusion tensor magnetic resonance imaging of the sheep brain

BackgroundAn ovine model can cast great insight in translational neuroscientific research due to its large brain volume and distinct regional neuroanatomical structures. The present study examined the applicability of brain functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) to sheep using a clinical MR scanner (3 tesla) with a head coil. The blood-oxygenation-level-dependent (BOLD) fMRI was performed on anesthetized sheep during the block-based presentation of external tactile and visual stimuli using gradient echo-planar-imaging (EPI) sequence.ResultsThe individual as well as group-based data processing subsequently showed activation in the eloquent sensorimotor and visual areas. DTI was acquired using 26 differential magnetic gradient directions to derive directional fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values from the brain. White matter tractography was also applied to reveal the macrostructure of the corticospinal tracts and optic radiations.ConclusionsUtilization of fMRI and DTI along with anatomical MRI in the sheep brain could shed light on a broader use of an ovine model in the field of translational neuroscientific research targeting the brain.

[1]  B. Matta,et al.  Direct cerebral vasodilatory effects of sevoflurane and isoflurane. , 1999, Anesthesiology.

[2]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[3]  P. Reilly,et al.  Upregulation of Amyloid Precursor Protein Messenger RNA in Response to Traumatic Brain Injury: An Ovine Head Impact Model , 1999, Experimental Neurology.

[4]  L. Traber,et al.  The Effects of Propofol on Hemodynamics and Renal Blood Flow in Healthy and in Septic Sheep, and Combined with Fentanyl in Septic Sheep , 1996, Anesthesia and analgesia.

[5]  E. De Schutter,et al.  Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation. , 2001, Magnetic resonance imaging.

[6]  John N Morelli,et al.  An image-based approach to understanding the physics of MR artifacts. , 2011, Radiographics : a review publication of the Radiological Society of North America, Inc.

[7]  Y. Assaf,et al.  Diffusion Tensor Imaging (DTI)-based White Matter Mapping in Brain Research: A Review , 2007, Journal of Molecular Neuroscience.

[8]  Jeanette. Mitchell,et al.  Histological studies of the dorsal nasal, Angularis Oculi, and facial veins of sheep (Ovis aries) , 1998, Journal of morphology.

[9]  Antti Saastamoinen,et al.  Diffusion tensor imaging of the brain in a healthy adult population: Normative values and measurement reproducibility at 3 T and 1.5 T , 2010, Acta radiologica.

[10]  Robert T. Knight,et al.  Spatio-temporal information analysis of event-related BOLD responses , 2007, NeuroImage.

[11]  Frank Emmrich,et al.  Permanent Middle Cerebral Artery Occlusion in Sheep: A Novel Large Animal Model of Focal Cerebral Ischemia , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  G. McCarthy,et al.  Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Scott R. Stanslaski,et al.  Brain Stimulation for Epilepsy – Local and Remote Modulation of Network Excitability , 2014, Brain Stimulation.

[14]  D. Heeger,et al.  In this issue , 2002, Nature Reviews Drug Discovery.

[15]  細田 徹,et al.  海外情報 Brigham and Women's Hospital, Harvard Medical School , 2010 .

[16]  I. Oguz,et al.  3-Dimensional Diffusion Tensor Imaging (DTI) Atlas of the Rat Brain , 2013, PloS one.

[17]  Douglas C. Noll,et al.  Accounting for nonlinear BOLD effects in fMRI: parameter estimates and a model for prediction in rapid event-related studies , 2005, NeuroImage.

[18]  Jong-Hwan Lee,et al.  Focused ultrasound modulates region-specific brain activity , 2011, NeuroImage.

[19]  Ari Syngeniotis,et al.  A Sheep Model for the Study of Focal Epilepsy with Concurrent Intracranial EEG and Functional MRI , 2002, Epilepsia.

[20]  E. Hillman Coupling mechanism and significance of the BOLD signal: a status report. , 2014, Annual review of neuroscience.

[21]  T. Tsurugizawa,et al.  Effects of isoflurane and alpha-chloralose anesthesia on BOLD fMRI responses to ingested l-glutamate in rats , 2010, Neuroscience.

[22]  Karl J. Friston,et al.  How Many Subjects Constitute a Study? , 1999, NeuroImage.

[23]  Xi-Nian Zuo,et al.  REST: A Toolkit for Resting-State Functional Magnetic Resonance Imaging Data Processing , 2011, PloS one.

[24]  C. Ferris,et al.  Comparison of evoked cortical activity in conscious and propofol‐anesthetized rats using functional MRI , 1999, Magnetic resonance in medicine.

[25]  Yuyi You,et al.  Improving reproducibility of VEP recording in rats: electrodes, stimulus source and peak analysis , 2011, Documenta Ophthalmologica.

[26]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[27]  J. R. Baker,et al.  Magnetic Resonance Imaging Mapping of Brain Function: Human Visual Cortex , 1992, Investigative radiology.

[28]  A. Connelly,et al.  White matter fiber tractography: why we need to move beyond DTI. , 2013, Journal of neurosurgery.

[29]  Chun Yuan,et al.  T1‐insensitive flow suppression using quadruple inversion‐recovery , 2002, Magnetic resonance in medicine.

[30]  S. Simpson,et al.  LOCALISATION OF THE MOTOR AREA IN THE SHEEP , 1911 .

[31]  J. Clarys,et al.  Diffusion Tensor Imaging of White Matter Tracts in the Dog Brain , 2013, Anatomical record.

[32]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[33]  A. Alexander,et al.  Diffusion tensor imaging of the brain , 2007, Neurotherapeutics.

[34]  H. Schneider,et al.  The Ovine Cerebral Venous System: Comparative Anatomy, Visualization, and Implications for Translational Research , 2014, PloS one.

[35]  G. Jahng,et al.  Neural Pathway Interference by Retained Acupuncture: A Functional MRI Study of a Dog Model of Parkinson's Disease , 2013, CNS neuroscience & therapeutics.

[36]  H. Lin,et al.  Anesthesia in sheep with propofol or with xylazine-ketamine followed by halothane. , 1997, Veterinary surgery : VS.

[37]  Yihong Yang,et al.  Simultaneous MRI acquisition of blood volume, blood flow, and blood oxygenation information during brain activation , 2004, Magnetic resonance in medicine.

[38]  D. Whitteridge,et al.  The cortical visual areas of the sheep. , 1976, The Journal of physiology.

[39]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[40]  A. Alexander,et al.  Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. , 2004, AJNR. American journal of neuroradiology.

[41]  Dae-Shik Kim,et al.  Conventional DTI vs. slow and fast diffusion tensors in cat visual cortex , 2003, Magnetic resonance in medicine.

[42]  Dirk Wiedermann,et al.  A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat , 2006, NeuroImage.

[43]  R. S. Hinks,et al.  Time course EPI of human brain function during task activation , 1992, Magnetic resonance in medicine.

[44]  Lawrence L. Wald,et al.  Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters , 2005, NeuroImage.

[45]  Max Wintermark,et al.  A pilot study of focused ultrasound thalamotomy for essential tremor. , 2013, The New England journal of medicine.

[46]  Andrew S. Lowe,et al.  Small animal, whole brain fMRI: Innocuous and nociceptive forepaw stimulation , 2007, NeuroImage.

[47]  A. Morel,et al.  High‐intensity focused ultrasound for noninvasive functional neurosurgery , 2009, Annals of neurology.

[48]  S. Maloney,et al.  Angularis oculi vein blood flow modulates the magnitude but not the control of selective brain cooling in sheep. , 2011, American journal of physiology. Regulatory, integrative and comparative physiology.

[49]  Hongxia Ren,et al.  CBF, BOLD, CBV, and CMRO2 fMRI signal temporal dynamics at 500‐msec resolution , 2008, Journal of magnetic resonance imaging : JMRI.

[50]  Hangyi Jiang,et al.  DtiStudio: Resource program for diffusion tensor computation and fiber bundle tracking , 2006, Comput. Methods Programs Biomed..

[51]  Jonathan D. Cohen,et al.  Improved Assessment of Significant Activation in Functional Magnetic Resonance Imaging (fMRI): Use of a Cluster‐Size Threshold , 1995, Magnetic resonance in medicine.

[52]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[53]  Eyal Zadicario,et al.  MAGNETIC RESONANCE IMAGING‐GUIDED FOCUSED ULTRASOUND FOR THERMAL ABLATION IN THE BRAIN: A FEASIBILITY STUDY IN A SWINE MODEL , 2007, Neurosurgery.

[54]  Ruxiang Xu,et al.  Activity-induced manganese-dependent functional MRI of the rat visual cortex following intranasal manganese chloride administration , 2010, Neuroscience Letters.

[55]  R. Upton,et al.  Epinephrine, norepinephrine and dopamine infusions decrease propofol concentrations during continuous propofol infusion in an ovine model , 2001, Intensive Care Medicine.

[56]  V M Haughton,et al.  Functional magnetic resonance imaging mapping of the sensorimotor cortex with tactile stimulation. , 1995, Neurosurgery.

[57]  S Reiz,et al.  Isoflurane—A Powerful Coronary Vasodilator in Patients with Coronary Artery Disease , 1983, Anesthesiology.

[58]  Peter Jezzard,et al.  An in vivo model for functional MRI in cat visual cortex , 1997, Magnetic resonance in medicine.