Ellipsoidal sets for resilient and robust static output-feedback

The implementation of a controller, if not exact, may lead to the so-called fragility problem, i.e., the loss of expected closed-loop properties. In the present note, this difficult problem is dealt with considering robust static-output feedback (SOF) control for uncertain linear time-invariant systems. By analogy with robust analysis theory based on quadratic separation, a new formulation for the SOF design is shown to be a valuable way to tackle fragility issues. Indeed, the use of a quadratic separator for design purpose allows to define a whole resilient (nonfragile) set of SOF control laws. Results are formulated as matrix inequalities one of which is nonlinear. A numerical algorithm based on nonconvex optimization is provided ant its running is illustrated on classical examples from literature.

[1]  R. Skelton,et al.  The XY-centring algorithm for the dual LMI problem: a new approach to fixed-order control design , 1995 .

[2]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[3]  J. Tsitsiklis,et al.  NP-Hardness of Some Linear Control Design Problems , 1997 .

[4]  Shinji Hara,et al.  Well-posedness of feedback systems: insights into exact robustness analysis , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[5]  L. Ghaoui,et al.  IMPROVED LMI CONDITIONS FOR GAIN SCHEDULING AND RELATED CONTROL PROBLEMS , 1998 .

[6]  M. Fu,et al.  A dual formulation of mixed μ and on the losslessness of (D, G) scaling , 1997, IEEE Trans. Autom. Control..

[7]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[8]  Joseph R. Corrado,et al.  Static output feedback controllers for systems with parametric uncertainty and controller gain variation , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[9]  D. Peaucelle,et al.  An efficient numerical solution for H2 static output feedback synthesis , 2001, 2001 European Control Conference (ECC).

[10]  Dimitri Peaucelle,et al.  A precise robust matrix root-clustering analysis with respect to polytopic uncertainty , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[11]  J. Tsitsiklis,et al.  NP-hardness of some linear control design problems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[12]  Keat-Choon Goh,et al.  Structure and factorization of quadratic constraints for robustness analysis , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[13]  C. Scherer A full block S-procedure with applications , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[14]  M. Athans,et al.  On the determination of the optimal constant output feedback gains for linear multivariable systems , 1970 .

[15]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[16]  E. Feron,et al.  Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions , 1996, IEEE Trans. Autom. Control..

[17]  Dimitri Peaucelle,et al.  Robust D stabilization of a polytope of matrices , 2002 .

[18]  Zhong-Ping Jiang,et al.  Decentralized nonlinear output-feedback stabilization with disturbance attenuation , 2001, IEEE Trans. Autom. Control..

[19]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[20]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[21]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[22]  Michael G. Safonov,et al.  Stability and Robustness of Multivariable Feedback Systems , 1980 .

[23]  Dimitri Peaucelle,et al.  Robust performance analysis with LMI-based methods for real parametric uncertainty via parameter-dependent Lyapunov functions , 2001, IEEE Trans. Autom. Control..

[24]  G. Meinsma,et al.  On stability robustness with respect to LTV uncertainties , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[25]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[26]  M. Rotea,et al.  An alternative to the D-K iteration? , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[27]  R. Skelton,et al.  LMI numerical solution for output feedback stabilization , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[28]  M. Safonov Stability margins of diagonally perturbed multivariable feedback systems , 1982 .

[29]  Pierre Apkarian,et al.  Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..

[30]  James F. Whidborne,et al.  Digital Controller Implementation and Fragility , 2001 .

[31]  Jianliang Wang,et al.  Non-fragile Hinfinity control for linear systems with multiplicative controller gain variations , 2001, Autom..

[32]  Dimitri Peaucelle,et al.  An LMI condition for robust stability of polynomial matrix polytopes , 2001, Autom..

[33]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[34]  Robert S. H. Istepanian,et al.  Design of full state feedback finite‐precision controllers , 2002 .

[35]  Fernando Paganini,et al.  Analysis of robust H/sub 2/ performance: comparisons and examples , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[36]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[37]  Lihua Xie,et al.  Robust dissipative control for linear systems with dissipative uncertainty , 1998 .

[38]  P. Apkarian,et al.  Mixed H2/H∞ multi-channel linear parameter-varying control in discrete time , 2000 .

[39]  Shuzhi Sam Ge,et al.  Adaptive neural network control of nonlinear systems with unknown time delays , 2003, IEEE Trans. Autom. Control..

[40]  Z. Luo,et al.  Computational complexity of a problem arising in fixed order output feedback design , 1997 .

[41]  Shankar P. Bhattacharyya,et al.  Robust, fragile or optimal? , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[42]  Olivier Bachelier Commande des systemes lineaires incertains : placement de poles robuste en d-stabilite , 1998 .

[43]  Dimitri Peaucelle Formulation générique de problèmes en analyse et commande robuste par les fonctions de Lyapunov dependant des paramètres , 2000 .

[44]  A. G. Mazko Lyapunov matrix Equations for a Certain Class of Regions Bounded by Algebraic Curves , 1980 .

[45]  D. Bernstein Some open problems in matrix theory arising in linear systems and control , 1992 .

[46]  Hans D. Mittelmann,et al.  An independent benchmarking of SDP and SOCP solvers , 2003, Math. Program..

[47]  Jianliang Wang,et al.  Non-fragile guaranteed cost control for discrete-time uncertain linear systems , 2001, Int. J. Syst. Sci..

[48]  Pascal Gahinet,et al.  H/sub /spl infin// design with pole placement constraints: an LMI approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[49]  P. Peres,et al.  a linear programming oriented procedure for quadratic stabilization of uncertain systems , 1989 .

[50]  Laurent El Ghaoui,et al.  Advances in linear matrix inequality methods in control: advances in design and control , 1999 .

[51]  Keat-Choon Goh,et al.  Robust analysis, sectors, and quadratic functionals , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[52]  J. Geromel,et al.  Numerical comparison of output feedback design methods , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[53]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[54]  Vincent D. Blondel,et al.  Simultaneous Stabilization Of Linear Systems , 1993 .

[55]  Tetsuya Iwasaki,et al.  Robust stability analysis with quadratic separator: parametric time-varying uncertainty case , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[56]  Vincent D. Blondel,et al.  Survey on the State of Systems and Control , 1995, Eur. J. Control.

[57]  M. Fu,et al.  A dual formulation of mixed μ and on the losslessness of (D, G) scaling , 1997, IEEE Trans. Autom. Control..

[58]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[59]  P.M. Makila Fragility and robustness puzzles , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[60]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[61]  Truong Q. Nguyen,et al.  Robust and reduced-order filtering: new characterizations and methods , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[62]  J. Geromel,et al.  Convex analysis of output feedback control problems: robust stability and performance , 1996, IEEE Trans. Autom. Control..

[63]  P. Peres,et al.  On a convex parameter space method for linear control design of uncertain systems , 1991 .

[64]  M. Safonov Stability margins of diagonally perturbed multivariable feedback systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[65]  Yong-Yan Cao,et al.  Static output feedback simultaneous stabilization: ILMI approach , 1998 .

[66]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[67]  S. Bhattacharyya,et al.  Robust control with structure perturbations , 1988 .

[68]  Friedemann Leibfritz,et al.  An LMI-Based Algorithm for Designing Suboptimal Static H2/Hinfinity Output Feedback Controllers , 2000, SIAM J. Control. Optim..

[69]  S. Bhattacharyya,et al.  Robust control with structured perturbations , 1987, 26th IEEE Conference on Decision and Control.

[70]  Ricardo H. C. Takahashi,et al.  On robust non-fragile static state-feedback controller synthesis , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[71]  Fernando Paganini,et al.  Linear matrix inequality methods for robust H 2 analysis: a survey with comparisons , 1999 .

[72]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1997, IEEE Trans. Autom. Control..

[73]  B. Barmish Necessary and sufficient conditions for quadratic stabilizability of an uncertain system , 1985 .

[74]  Karolos M. Grigoriadis,et al.  Low-order control design for LMI problems using alternating projection methods , 1996, Autom..

[75]  D. Peaucelle,et al.  Ellipsoidal sets for static output feedback , 2002 .

[76]  S. Gutman,et al.  A general theory for matrix root-clustering in subregions of the complex plane , 1981 .

[77]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[78]  IwasakiT.,et al.  All controllers for the general H control problem , 1994 .

[79]  Carsten W. Scherer,et al.  Robust mixed control and linear parameter-varying control with full block scalings , 1999 .

[80]  P. Dorato,et al.  Non-fragile controller design: an overview , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[81]  S. Hara,et al.  Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations , 1998, IEEE Trans. Autom. Control..

[82]  P. Dorato,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.