Automatic player behavior analysis system using trajectory data in a massive multiplayer online game

This paper presents a new automated behavior analysis system using a trajectory clustering method for massive multiplayer online games (MMOGs). The description of a player’s behavior is useful information in MMOG development, but the monitoring and evaluation cost of player behavior is expensive. In this paper, we suggest an automated behavior analysis system using simple trajectory data with few monitoring and evaluation costs. We used hierarchical classification first, then applied an extended density based clustering algorithm for behavior analysis. We show the usefulness of our system using trajectory data from the commercial MMOG World of Warcraft (WOW). The results show that the proposed system can analyze player behavior and automatically generate insights on players’ experience from simple trajectory data.

[1]  Darryl Charles,et al.  Dynamic Player Modelling: A Framework for Player-Centered Digital Games , 2004 .

[2]  Sudipto Guha,et al.  CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.

[3]  Alexander Hinneburg,et al.  DENCLUE 2.0: Fast Clustering Based on Kernel Density Estimation , 2007, IDA.

[4]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[5]  Ruck Thawonmas,et al.  Cellular automata and Hilditch thinning for extraction of user paths in online games , 2006, NetGames '06.

[6]  Maneesh Agrawala,et al.  Visualizing competitive behaviors in multi-user virtual environments , 2004, IEEE Visualization 2004.

[7]  Katy Börner,et al.  Social Diffusion Patterns in Three-Dimensional Virtual Worlds , 2003, Inf. Vis..

[8]  Jiawei Han,et al.  CLARANS: A Method for Clustering Objects for Spatial Data Mining , 2002, IEEE Trans. Knowl. Data Eng..

[9]  Luca Chittaro,et al.  VU-Flow: A Visualization Tool for Analyzing Navigation in Virtual Environments , 2006, IEEE Transactions on Visualization and Computer Graphics.

[10]  Ruck Thawonmas,et al.  MMOG Player Classification Using Hidden Markov Models , 2004, ICEC.

[11]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[12]  Sudipto Guha,et al.  ROCK: a robust clustering algorithm for categorical attributes , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[13]  R. Houle Player Modeling for Adaptive Games , 2006 .

[14]  Aidong Zhang,et al.  WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases , 1998, VLDB.

[15]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[16]  Ruck Thawonmas,et al.  Detection of Landmarks for Clustering of Online-Game Players , 2007, Int. J. Virtual Real..

[17]  Robert J. Moore,et al.  Building an MMO With Mass Appeal , 2006 .

[18]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[19]  Darryl Charles,et al.  Toward an understanding of flow in video games , 2008, CIE.

[20]  Ashraf Saad,et al.  Genetic Algorithms for Artificial Neural Net-based Condition Monitoring System Design for Rotating Mechanical Systems , 2004, WSC.

[21]  Bruce Phillips,et al.  Tracking real-time user experience (TRUE): a comprehensive instrumentation solution for complex systems , 2008, CHI.

[22]  Steven E. Franklin,et al.  Spatial and spectral classification of remote-sensing imagery , 1991 .

[23]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.