MEASURES DESCRIBING A TURBULENT FLOW
暂无分享,去创建一个
[1] Hiroshi Fujita,et al. On the Navier-Stokes initial value problem. I , 1964 .
[2] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[3] R. Bowen. Ergodic theory of Axiom A flows , 1975 .
[4] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[5] Ju I Kifer. ON SMALL RANDOM PERTURBATIONS OF SOME SMOOTH DYNAMICAL SYSTEMS , 1974 .
[6] Sur la deuxième bifurcation d'une solution stationnaire de systèmes du type Navier-Stokes , 1977 .
[7] David Ruelle,et al. An inequality for the entropy of differentiable maps , 1978 .
[8] D. Ruelle. Microscopic fluctuations and turbulence , 1979 .
[9] J. Mallet-Paret. Negatively invariant sets of compact maps and an extension of a theorem of Cartwright , 1976 .
[10] D. Ruelle. SENSITIVE DEPENDENCE ON INITIAL CONDITION AND TURBULENT BEHAVIOR OF DYNAMICAL SYSTEMS , 1979 .
[11] D. Ruelle,et al. The ergodic theory of AxiomA flows , 1975 .
[12] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[13] David Ruelle,et al. Characteristic Exponents and Invariant Manifolds in Hilbert Space , 1982 .
[14] David Ruelle,et al. A MEASURE ASSOCIATED WITH AXIOM-A ATTRACTORS. , 1976 .
[15] Hiroko Morimoto,et al. On the Navier-Stokes initial value problem , 1974 .