gutSMASH predicts specialized primary metabolic pathways from the human gut microbiota

[1]  A. Kurilshikov,et al.  Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome , 2022, Nature Medicine.

[2]  William W. Van Treuren,et al.  Clostridium sporogenes uses reductive Stickland metabolism in the gut to generate ATP and produce circulating metabolites , 2022, Nature Microbiology.

[3]  B. Moore,et al.  Mining genomes to illuminate the specialized chemistry of life , 2021, Nature Reviews Genetics.

[4]  Peter D. Karp,et al.  Pathway Tools version 23.0 update: software for pathway/genome informatics and systems biology , 2019, Briefings Bioinform..

[5]  Gavin M Douglas,et al.  PICRUSt2 for prediction of metagenome functions , 2020, Nature Biotechnology.

[6]  Peter D. Karp,et al.  The MetaCyc database of metabolic pathways and enzymes - a 2019 update , 2019, Nucleic Acids Res..

[7]  Marnix H. Medema,et al.  A computational framework to explore large-scale biosynthetic diversity , 2019, Nature Chemical Biology.

[8]  A. Hirayama,et al.  Dietary L-serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut , 2019, Nature Microbiology.

[9]  M. Fischbach,et al.  A metabolic pathway for bile acid dehydroxylation by the gut microbiome , 2019, bioRxiv.

[10]  Suzanne M. Paley,et al.  The BioCyc collection of microbial genomes and metabolic pathways , 2019, Briefings Bioinform..

[11]  C. Huttenhower,et al.  Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences , 2019, Nature Communications.

[12]  Colin J. Brislawn,et al.  Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases , 2019, Nature.

[13]  S. Lee,et al.  antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline , 2019, Nucleic Acids Res..

[14]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v4: recent updates and new developments , 2019, Nucleic Acids Res..

[15]  Suisha Liang,et al.  1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses , 2019, Nature Biotechnology.

[16]  Neil D. Rawlings,et al.  Genome properties in 2019: a new companion database to InterPro for the inference of complete functional attributes , 2018, Nucleic Acids Res..

[17]  Luke R. Thompson,et al.  Species-level functional profiling of metagenomes and metatranscriptomes , 2018, Nature Methods.

[18]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[19]  Jun Wang,et al.  Quantitative microbiome profiling links gut community variation to microbial load , 2017, Nature.

[20]  Johannes Söding,et al.  MMseqs2: sensitive protein sequence searching for the analysis of massive data sets , 2017, bioRxiv.

[21]  Arthur Brady,et al.  Strains, functions and dynamics in the expanded Human Microbiome Project , 2017, Nature.

[22]  H. Andrews-Polymenis,et al.  Respiration of Microbiota-Derived 1,2-propanediol Drives Salmonella Expansion during Colitis , 2017, PLoS pathogens.

[23]  F. Hildebrand,et al.  Species–function relationships shape ecological properties of the human gut microbiome , 2016, Nature Microbiology.

[24]  Morris A. Swertz,et al.  Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity , 2016, Science.

[25]  Brian D. Ondov,et al.  Mash: fast genome and metagenome distance estimation using MinHash , 2015, Genome Biology.

[26]  Michael A Fischbach,et al.  Computational approaches to natural product discovery. , 2015, Nature chemical biology.

[27]  Annaïg Lan,et al.  The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. , 2015, Free radical biology & medicine.

[28]  A. Zhernakova,et al.  Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics , 2015, BMJ Open.

[29]  R. Breitling,et al.  Detecting Sequence Homology at the Gene Cluster Level with MultiGeneBlast , 2013, Molecular biology and evolution.

[30]  E. Papoutsakis,et al.  Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. , 2012, Current opinion in biotechnology.

[31]  Bernard Henrissat,et al.  Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome , 2012, PLoS Comput. Biol..

[32]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[33]  Robert D. Finn,et al.  Representative Proteomes: A Stable, Scalable and Unbiased Proteome Set for Sequence Analysis and Functional Annotation , 2011, PloS one.

[34]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[35]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[36]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[37]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[38]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[39]  P. Lawson,et al.  Reclassification of Bacteroides putredinis (Weinberg et al., 1937) in a new genus Alistipes gen. nov., as Alistipes putredinis comb. nov., and description of Alistipes finegoldii sp. nov., from human sources. , 2003, Systematic and applied microbiology.

[40]  G. Macfarlane,et al.  Short chain fatty acids in human large intestine, portal, hepatic and venous blood. , 1987, Gut.