Manifolds and Graphs with Mostly Positive Curvatures

Bakry—Emery theory is used to define a ‘Ricci curvature’ for graphs. An upper bound for the spectral abcissa of the Laplacian of graphs with more than one end is given in terms of this quantity. This is similar to an existing result for manifolds, and the proof of that is also given.

[1]  V. K. Patodi,et al.  Riemannian Structures and Triangulations of Manifold , 1976 .

[2]  H. Donnelly The differential form spectrum of hyperbolic space , 1981 .

[3]  J. Dodziuk Finite-difference approach to the Hodge theory of harmonic forms , 1976 .

[4]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[5]  D. Elworthy Geometric aspects of diffusions on manifolds , 1988 .

[6]  M. P. Gaffney The Heat Equation Method of Milgram and Rosenbloom for Open Riemannian Manifolds , 1954 .

[7]  Inégalités de Sobolev faibles : un critère Γ2 , 1991 .

[8]  P. Bérard,et al.  From vanishing theorems to estimating theorems: the Bochner technique revisited , 1988 .

[9]  Lower bounds for the eigenvalues of Riemannian manifolds. , 1982 .

[10]  K. Elworthy Stochastic Differential Equations on Manifolds , 1982 .

[11]  Steven Rosenberg,et al.  Generalized bochner theorems and the spectrum of complete manifolds , 1988, Acta Applicandae Mathematicae.

[12]  Peter Gerl Random walks on graphs with a strong isoperimetric property , 1988 .

[13]  B. Gaveau,et al.  Critère de convergence des fonctionnelles de Kac et application en mécanique quantique et en géométrie , 1978 .

[14]  S. Rosenberg,et al.  Manifolds with wells of negative curvature , 1991 .

[15]  P. Malliavin Formules de la moyenne, calcul de perturbations et théorèmes d'annulation pour les formes harmoniques , 1974 .