Manifolds and Graphs with Mostly Positive Curvatures
暂无分享,去创建一个
[1] V. K. Patodi,et al. Riemannian Structures and Triangulations of Manifold , 1976 .
[2] H. Donnelly. The differential form spectrum of hyperbolic space , 1981 .
[3] J. Dodziuk. Finite-difference approach to the Hodge theory of harmonic forms , 1976 .
[4] L. Rogers. Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .
[5] D. Elworthy. Geometric aspects of diffusions on manifolds , 1988 .
[6] M. P. Gaffney. The Heat Equation Method of Milgram and Rosenbloom for Open Riemannian Manifolds , 1954 .
[7] Inégalités de Sobolev faibles : un critère Γ2 , 1991 .
[8] P. Bérard,et al. From vanishing theorems to estimating theorems: the Bochner technique revisited , 1988 .
[9] Lower bounds for the eigenvalues of Riemannian manifolds. , 1982 .
[10] K. Elworthy. Stochastic Differential Equations on Manifolds , 1982 .
[11] Steven Rosenberg,et al. Generalized bochner theorems and the spectrum of complete manifolds , 1988, Acta Applicandae Mathematicae.
[12] Peter Gerl. Random walks on graphs with a strong isoperimetric property , 1988 .
[13] B. Gaveau,et al. Critère de convergence des fonctionnelles de Kac et application en mécanique quantique et en géométrie , 1978 .
[14] S. Rosenberg,et al. Manifolds with wells of negative curvature , 1991 .
[15] P. Malliavin. Formules de la moyenne, calcul de perturbations et théorèmes d'annulation pour les formes harmoniques , 1974 .