The electronic structure of Cu+, Ag+, and Au+ zeolites.

A variety of procedures have been used to prepare d10-zeolite materials. The electronic structure of these materials can be regarded to a first approximation as a superposition of the framework, of the charge compensating ions, of solvent molecules and of guest species. Zeolite oxygen to d10-ion charge transfer transitions dominate the electronic spectra if the ions coordinate to the zeolite oxygens. Specific coordination sites can influence the energy and the intensity of these transitions remarkably. Intra guest transitions dominate in quantum dot materials, as discussed in detail for luminescent Ag2S zeolite A. The zeolite is not needed for the photocatalytic water oxidation on Ag+/AgCl photo anodes with visible light. It can, however, be used to increase the active surface area substantially.

[1]  R. Hoffmann,et al.  Electronic properties of the silver-silver chloride cluster interface. , 2002, Chemistry.

[2]  G. Calzaferri,et al.  Luminescent Silver Sulfide Clusters , 2002 .

[3]  R. T. Yang,et al.  Cu(I)−Y-Zeolite as a Superior Adsorbent for Diene/Olefin Separation , 2001 .

[4]  C. Tripp,et al.  Photoluminescence and Raman Spectroscopy as Probes to Investigate Silver and Gold Dicyanide Clusters Doped in A-Zeolite and Their Photoassisted Degradation of Carbaryl , 2001 .

[5]  J. M. Martínez-Duart,et al.  Hydrothermal growth of CdS and ZnS Nanoparticles in MOR-type zeolites , 2001 .

[6]  R. T. Yang,et al.  Influence of Ag content and H2S exposure on 1,3-butadiene/1-butene adsorption by Ag ion-exchanged Y-zeolites (Ag-Y) , 2001 .

[7]  G. Calzaferri,et al.  Quantum-Sized Silver, Silver Chloride and Silver Sulfide Clusters , 2001, Journal of Imaging Science and Technology.

[8]  D. Wiechert,et al.  Optically Functional Zeolites: Evaluation of UV and VUV Stimulated Photoluminescence Properties of Ce3+‐ and Tb3+‐doped Zeolite X , 2001 .

[9]  C. Grey,et al.  Characterization of Extra-Framework Cation Positions in Zeolites NaX and NaY with Very Fast 23Na MAS and Multiple Quantum MAS NMR Spectroscopy , 2000 .

[10]  G. Calzaferri,et al.  Colors of Ag+-Exchanged Zeolite A , 2000 .

[11]  C. Arean,et al.  Well defined carbonyl complexes in Ag+- and Cu+-exchanged ZSM-5 zeolite: a comparison with homogeneous counterparts , 1999 .

[12]  R. Mehra,et al.  Synthesis and Ultrafast Study of Cysteine- and Glutathione-Capped Ag2S Semiconductor Colloidal Nanoparticles , 1999 .

[13]  R. Baetzold Calculated Properties of Sulfur Centers on AgCl Cubic Surfaces , 1999, Journal of Imaging Science and Technology.

[14]  G. Calzaferri,et al.  Silver Chloride Clusters and Surface States , 1999 .

[15]  Graham Mitchell,et al.  Out of the Shadows , 1999 .

[16]  Gion Calzaferri,et al.  Die gelbe Farbe von silberhaltigem Zeolith A , 1998 .

[17]  M. Anpo,et al.  THE RELATIONSHIP BETWEEN THE LOCAL STRUCTURE OF COPPER(I) IONS ON CU+/ZEOLITE CATALYSTS AND THEIR PHOTOCATALYTIC REACTIVITIES FOR THE DECOMPOSITION OF NOX INTO N2 AND O2 AT 275 K , 1998 .

[18]  T. Tani Comprehensive Model for Sulfur Sensitization (2): Characterization of Sulfur Sensitization Centers and Fog Centers , 1998, Journal of Imaging Science and Technology.

[19]  Gion Calzaferri,et al.  Photocatalytic oxidation of water to O2 on AgCl-coated electrodes , 1997 .

[20]  C. Lamberti,et al.  XAFS, IR, and UV−Vis Study of the CuI Environment in CuI-ZSM-5 , 1997 .

[21]  S. T. King,et al.  Reaction Mechanism of Oxidative Carbonylation of Methanol to Dimethyl Carbonate in Cu–Y Zeolite , 1996 .

[22]  T. Shido,et al.  EXAFS/XANES, XRD, and UV−Vis Characterization of Intrazeolitic Gold(I) Prepared by Monolayer Dispersion of AuCl3 inside Na−Y Zeolite , 1996 .

[23]  B. Wan,et al.  Pretreatment effect of gold/iron/zeolite-y on carbon monoxide oxidation , 1995 .

[24]  G. Calzaferri,et al.  Silver-Zeolite-Modified Electrodes: An Intrazeolite Electron Transport Mechanism , 1995 .

[25]  T. Sun,et al.  Silver Clusters and Chemistry in Zeolites , 1994 .

[26]  K. Seff,et al.  Crystal Structures of Fully Dehydrated Cd(II)-Exchanged Zeolite A and of Its Cadmium Sorption Complex Containing Cd2+, Cd+, Cd22+, and Cd20 , 1994 .

[27]  L. Schaaf Out of the Shadows: Herschel, Talbot, and the Invention of Photography , 1992 .

[28]  G. Stucky,et al.  Class B sodalites: nonstoichiometric silver, sodium halosodalites , 1992 .

[29]  R. Drago,et al.  A reversible molecular oxygen binding system: pentacyanocobaltate(3-) inside zeolite Y , 1992 .

[30]  Mark E. Davis,et al.  High resolution, quasi-equilibrium sorption studies of molecular sieves , 1990 .

[31]  G. Stucky,et al.  Quantum Confinement and Host/Guest Chemistry: Probing a New Dimension , 1990, Science.

[32]  G. Calzaferri,et al.  Infrared transmission spectroscopy of silver zeolite A , 1989 .

[33]  G. Calzaferri,et al.  Self-sensitization of photo-oxygen evolution in Ag+ zeolites: computer-controlled experiments , 1984 .

[34]  A. Fujishima,et al.  Effect of Cl− and Br− Ions and pH on the Flatband Potentials of Silver Halide Sheet Crystal Electrodes , 1980 .

[35]  K. Klier,et al.  Effects of carbon monoxide absorption on the luminescence of reduced copper-exchanged Y zeolite , 1980 .

[36]  David L. Griscom,et al.  The electronic structure of SiO2: A review of recent spectroscopic and theoretical advances , 1977 .

[37]  R. M. Milton,et al.  Crystalline Zeolites. I. The Properties of a New Synthetic Zeolite, Type A , 1956 .

[38]  Stephen C. Parker,et al.  Modelling the effect of water on cation exchange in zeolite A , 2002 .

[39]  M. Wark,et al.  UV/VIS DIFFUSE REFLECTANCE STUDY ON THE FORMATION OF ZINC OXIDE CLUSTERS IN ZEOLITES , 1998 .

[40]  T. Tani,et al.  Characterization of sensitization centers and fog centers formed during digestion for sulfur sensitization , 1995 .

[41]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .

[42]  H. Haefke,et al.  Infrared photography based on vapor-deposited silver sulfide thin films , 1994 .

[43]  G. Calzaferri,et al.  Luminescence properties of Cu+ in zeolites. In situ study of thin layers , 1993 .

[44]  S. Qiu,et al.  Novel preparation of gold(I) carbonyls and nitrosyls in NaY zeolite and their catalytic activity for NO reduction with CO , 1992 .

[45]  G. Calzaferri,et al.  The symmetrical octasilasesquioxanes X8Si8O12: electronic structure and reactivity , 1991 .

[46]  G. Stucky,et al.  Synthesis and characterization of group III-V semiconductor clusters: gallium phosphide GaP in zeolite Y , 1989 .

[47]  Norman Herron,et al.  Optical properties of CdS and PbS clusters encapsulated in zeolites , 1987 .

[48]  Donald W Breck,et al.  Zeolite Molecular Sieves: Structure, Chemistry, and Use , 1974 .

[49]  P. A. Jacobs,et al.  Cleavage of water over zeolites , 1977 .

[50]  R. M. Barrer,et al.  Imbibition of electrolytes by porous crystals , 1964 .

[51]  H. Beyer,et al.  Molekularsiebe mit farbiger Indizierung des Wassergehaltes , 1962 .