Building an iterative heuristic solver for a quantum annealer

A quantum annealer heuristically minimizes quadratic unconstrained binary optimization (QUBO) problems, but is limited by the physical hardware in the size and density of the problems it can handle. We have developed a meta-heuristic solver that utilizes D-Wave Systems’ quantum annealer (or any other QUBO problem optimizer) to solve larger or denser problems, by iteratively solving subproblems, while keeping the rest of the variables fixed. We present our algorithm, several variants, and the results for the optimization of standard QUBO problem instances from OR-Library of sizes 500 and 2500 as well as the Palubeckis instances of sizes 3000–7000. For practical use of the solver, we show the dependence of the time to best solution on the desired gap to the best known solution. In addition, we study the dependence of the gap and the time to best solution on the size of the problems solved by the underlying optimizer. Our results were obtained by simulation, using a tabu 1-opt solver, due to the huge number of runs required and limited quantum annealer time availability.

[1]  P. Chardaire,et al.  A Decomposition Method for Quadratic Zero-One Programming , 1995 .

[2]  Ray,et al.  Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations. , 1989, Physical review. B, Condensed matter.

[3]  A. K. Mittal,et al.  Unconstrained quadratic bivalent programming problem , 1984 .

[4]  Daniel A. Lidar,et al.  Probing for quantum speedup in spin-glass problems with planted solutions , 2015, 1502.01663.

[5]  Panos M. Pardalos,et al.  Computational aspects of a branch and bound algorithm for quadratic zero-one programming , 1990, Computing.

[6]  Nicolas Beldiceanu,et al.  Integration of AI and OR Techniques in Contraint Programming for Combinatorial Optimzation Problems , 2012, Lecture Notes in Computer Science.

[7]  P. Merz,et al.  Memetic algorithms for the unconstrained binary quadratic programming problem. , 2004, Bio Systems.

[8]  Endre Boros,et al.  Preprocessing of unconstrained quadratic binary optimization , 2006 .

[9]  J. Preskill,et al.  Error correction for encoded quantum annealing , 2015, 1511.00004.

[10]  Tao Tan,et al.  A global continuation algorithm for solving binary quadratic programming problems , 2008, Comput. Optim. Appl..

[11]  Itay Hen,et al.  Unraveling Quantum Annealers using Classical Hardness , 2015, Scientific reports.

[12]  C. Eden BookOn systems analysis : David Berlinski 186 pages, £ 10.25 (Cambridge, Mass, and London, MIT Press, 1976)☆ , 1978 .

[13]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[14]  Luiz Antonio Nogueira Lorena,et al.  Improving a Lagrangian decomposition for the unconstrained binary quadratic programming problem , 2012, Comput. Oper. Res..

[15]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[16]  F. B A R A H O N A,et al.  EXPERIMENTS IN QUADRATIC 0-1 PROGRAMMING , 2005 .

[17]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[18]  A. Prékopa,et al.  Probabilistic bounds and algorithms for the maximum satisfiability problem , 1990 .

[19]  Panos M. Pardalos,et al.  Continuous Approaches for Solving Discrete Optimization Problems , 2006 .

[20]  C. Helmberg,et al.  Solving quadratic (0,1)-problems by semidefinite programs and cutting planes , 1998 .

[21]  G. Rinaldi,et al.  Exact ground states of Ising spin glasses: New experimental results with a branch-and-cut algorithm , 1995 .

[22]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[23]  Geraldo Regis Mauri,et al.  Lagrangean decompositions for the unconstrained binary quadratic programming problem , 2011, Int. Trans. Oper. Res..

[24]  Gintaras Palubeckis A heuristic-based branch and bound algorithm for unconstrained quadratic zero-one programming , 2005, Computing.

[25]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..

[26]  Yiqiao Cai,et al.  Memetic clonal selection algorithm with EDA vaccination for unconstrained binary quadratic programming problems , 2011, Expert Syst. Appl..

[27]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[28]  Kengo Katayama,et al.  Solving Large Binary Quadratic Programming Problems by Effective Genetic Local Search Algorithm , 2000, GECCO.

[29]  Duan Li,et al.  An exact solution method for unconstrained quadratic 0–1 programming: a geometric approach , 2012, J. Glob. Optim..

[30]  Panos M. Pardalos,et al.  Lower Bound Improvement and Forcing Rule for Quadratic Binary Programming , 2006, Comput. Optim. Appl..

[31]  Leonidas D. Iasemidis,et al.  Quadratic Binary Programming and Dynamical System Approach to Determine the Predictability of Epileptic Seizures , 2001, J. Comb. Optim..

[32]  Cong Wang,et al.  Experimental evaluation of an adiabiatic quantum system for combinatorial optimization , 2013, CF '13.

[33]  Martin Grötschel,et al.  An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988, Oper. Res..

[34]  F. Glover,et al.  Tabu Search with Critical Event Memory: An Enhanced Application for Binary Quadratic Programs , 1999 .

[35]  Talal M. Alkhamis,et al.  Simulated annealing for the unconstrained quadratic pseudo-Boolean function , 1998, Eur. J. Oper. Res..

[36]  Mark W. Johnson,et al.  Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor , 2014, IEEE Transactions on Applied Superconductivity.

[37]  Aidan Roy,et al.  Discrete optimization using quantum annealing on sparse Ising models , 2014, Front. Phys..

[38]  Fred W. Glover,et al.  A Study of Memetic Search with Multi-parent Combination for UBQP , 2010, EvoCOP.

[39]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[40]  Endre Boros,et al.  New algorithms for quadratic unconstrained binary optimization (qubo) with applications in engineering and social sciences , 2008 .

[41]  Kengo Katayama,et al.  Performance of simulated annealing-based heuristic for the unconstrained binary quadratic programming problem , 2001, Eur. J. Oper. Res..

[42]  Daniel A. Lidar,et al.  Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.

[43]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[44]  Firas Hamze,et al.  Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly , 2015, 1505.01545.

[45]  Gottfried Tinhofer,et al.  A branch and bound algorithm for the maximum clique problem , 1990, ZOR Methods Model. Oper. Res..

[46]  Michael W. Carter,et al.  The indefinite zero-one quadratic problem , 1984, Discret. Appl. Math..

[47]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.

[48]  Fred W. Glover,et al.  A new modeling and solution approach for the number partitioning problem , 2005, Adv. Decis. Sci..

[49]  H. Paul Williams Model building in linear and integer programming , 1985 .

[50]  Erio Tosatti,et al.  Optimization by quantum annealing: lessons from hard satisfiability problems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Fred W. Glover,et al.  Probabilistic GRASP-Tabu Search algorithms for the UBQP problem , 2013, Comput. Oper. Res..

[52]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[53]  Fred W. Glover,et al.  Efficient evaluations for solving large 0-1 unconstrained quadratic optimisation problems , 2010, Int. J. Metaheuristics.

[54]  Firas Hamze,et al.  Erratum: Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines (Phys. Rev. X 4, 021008 (2014)) , 2015 .

[55]  Fred W. Glover,et al.  Neighborhood analysis: a case study on curriculum-based course timetabling , 2011, J. Heuristics.

[56]  Fred W. Glover,et al.  Diversification-driven tabu search for unconstrained binary quadratic problems , 2010, 4OR.

[57]  Fred W. Glover,et al.  A unified modeling and solution framework for combinatorial optimization problems , 2004, OR Spectr..

[58]  Jens Gottlieb,et al.  Evolutionary Computation in Combinatorial Optimization , 2006, Lecture Notes in Computer Science.

[59]  Pierre Hansen,et al.  Exact Sequential Algorithms for Additive Clustering , 2000 .

[60]  Daniel A. Lidar,et al.  Quantum annealing correction for random Ising problems , 2014, 1408.4382.

[61]  P. Pardalos,et al.  Parallel branch and bound algorithms for quadratic zero–one programs on the hypercube architecture , 1990 .

[62]  Fred W. Glover,et al.  A Multilevel Algorithm for Large Unconstrained Binary Quadratic Optimization , 2012, CPAIOR.

[63]  Endre Boros,et al.  Local search heuristics for Quadratic Unconstrained Binary Optimization (QUBO) , 2007, J. Heuristics.

[64]  Bahram Alidaee,et al.  A scatter search approach to unconstrained quadratic binary programs , 1999 .

[65]  Michael Jünger,et al.  Experiments in quadratic 0–1 programming , 1989, Math. Program..

[66]  P. Zoller,et al.  A quantum annealing architecture with all-to-all connectivity from local interactions , 2015, Science Advances.

[67]  Philippe Michelon,et al.  A linearization framework for unconstrained quadratic (0-1) problems , 2009, Discret. Appl. Math..

[68]  B. Freisleben,et al.  Genetic algorithms for binary quadratic programming , 1999 .

[69]  F. Glover,et al.  Adaptive Memory Tabu Search for Binary Quadratic Programs , 1998 .

[70]  Erio Tosatti,et al.  Quantum annealing by the path-integral Monte Carlo method: The two-dimensional random Ising model , 2002 .

[71]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[72]  J. Jeffry Howbert,et al.  The Maximum Clique Problem , 2007 .

[73]  Firas Hamze,et al.  Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines , 2014, 1401.1546.

[74]  Andrew D. King,et al.  Performance of a quantum annealer on range-limited constraint satisfaction problems , 2015, ArXiv.

[75]  Alain Billionnet,et al.  Minimization of a quadratic pseudo-Boolean function , 1994 .

[76]  G. Kochenberger,et al.  0-1 Quadratic programming approach for optimum solutions of two scheduling problems , 1994 .

[77]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[78]  O. Shylo,et al.  Systems Analysis; Solving unconstrained binary quadratic programming problem by global equilibrium search , 2011 .

[79]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[80]  Fred W. Glover,et al.  Path relinking for unconstrained binary quadratic programming , 2012, Eur. J. Oper. Res..

[81]  Andrea Lodi,et al.  An evolutionary heuristic for quadratic 0-1 programming , 1999, Eur. J. Oper. Res..

[82]  Gintaras Palubeckis,et al.  Multistart Tabu Search Strategies for the Unconstrained Binary Quadratic Optimization Problem , 2004, Ann. Oper. Res..

[83]  Masoud Mohseni,et al.  Computational Role of Collective Tunneling in a Quantum Annealer , 2014 .

[84]  John E. Beasley,et al.  Heuristic algorithms for the unconstrained binary quadratic programming problem , 1998 .

[85]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[86]  M. Hastings,et al.  From local to global ground states in Ising spin glasses , 2014, 1408.1901.

[87]  Hoai An Le Thi,et al.  An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs , 2010 .

[88]  Panos M. Pardalos,et al.  Handbook of combinatorial optimization. Supplement , 2005 .

[89]  Gintaras Palubeckis,et al.  Iterated Tabu Search for the Unconstrained Binary Quadratic Optimization Problem , 2006, Informatica.

[90]  Aram Wettroth Harrow,et al.  Simulated Quantum Annealing Can Be Exponentially Faster Than Classical Simulated Annealing , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[91]  Luiz Antonio Nogueira Lorena,et al.  A column generation approach for the unconstrained binary quadratic programming problem , 2012, Eur. J. Oper. Res..

[92]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[93]  R. Barends,et al.  Digital quantum simulation of fermionic models with a superconducting circuit , 2015, Nature Communications.