Snowpack variability across various spatio‐temporal resolutions

This study was supported by the research projects Hidrologia nival en el Pirineo Central Espanol: Variabilidad espacial, importancia hidrologica y respuesta a la variabilidad y cambio climatico (CGL2011-27536/HID, Hidronieve) and CGL2011-27753-C02-01, financed by the Spanish Commission of Science and Technology and FEDER; CTTP1/12 ‘Creacion de un modelo de alta resolucion espacial para cuantificar la esquiabilidad y la afluencia turistica en el Pirineo bajo distintos escenarios de cambio climatico’, financed by the Comunidad de Trabajo de los Pirineos; and 844/2013 ‘El glaciar de Monte Perdido: Monitorizacion y estudio de su dinamica actual y procesos criosfericos asociados como indicadores de procesos de cambio global’, financed by MAGRAMA, National Parks. SRFs and GASs time were funded by the NASA Terrestrial Hydrology Program entitled ‘Improved Characterization of Snow Depth in Complex Terrain Using Satellite Lidar Altimetry’ (Grant # NNX11AQ66G led by PI Dr. M.F. Jasinski).

[1]  S. Vicente‐Serrano,et al.  Response of snow processes to climate change: spatial variability in a small basin in the Spanish Pyrenees , 2013 .

[2]  Michael Lehning,et al.  Persistence in intra‐annual snow depth distribution: 1. Measurements and topographic control , 2011 .

[3]  L. S. Kuchment,et al.  Statistical self‐similarity of spatial variations of snow cover: verification of the hypothesis and application in the snowmelt runoff generation models , 2001 .

[4]  Danny Marks,et al.  Long‐term snow distribution observations in a mountain catchment: Assessing variability, time stability, and the representativeness of an index site , 2014 .

[5]  J. López‐Moreno,et al.  Sensitivity of the snow energy balance to climatic changes: prediction of snowpack in the Pyrenees in the 21st century , 2008 .

[6]  Anthony Lehmann,et al.  Effects of sample and grid size on the accuracy and stability of regression‐based snow interpolation methods , 2009 .

[7]  B. Alvera,et al.  Evaluation of spatial variability in snow water equivalent for a high mountain catchment , 2004 .

[8]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[9]  Thomas Skaugen,et al.  Multiscale spatial variability of lidar-derived and modeled snow depth on Hardangervidda, Norway , 2013, Annals of Glaciology.

[10]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[11]  Roger C. Bales,et al.  Scaling snow observations from the point to the grid element: Implications for observation network design , 2005 .

[12]  T. Skaugen Modelling the spatial variability of snow water equivalent at the catchment scale , 2007 .

[13]  Günter Blöschl,et al.  Scaling issues in snow hydrology , 1999 .

[14]  Michael Lehning,et al.  Statistical modelling of the snow depth distribution in open alpine terrain , 2013 .

[15]  Kelly Elder,et al.  Scaling properties and spatial organization of snow depth fields in sub‐alpine forest and alpine tundra , 2009 .

[16]  P. Marsh,et al.  Local advection of sensible heat in the snowmelt landscape of Arctic tundra , 1998 .

[17]  Matthew Sturm,et al.  Using repeated patterns in snow distribution modeling: An Arctic example , 2010 .

[18]  M. Lehning,et al.  Relative importance of advective heat transport and boundary layer decoupling in the melt dynamics of a patchy snow cover , 2013 .

[19]  Edward G. Josberger,et al.  Analysis of Ground-Measured and Passive-Microwave-Derived Snow Depth Variations in Midwinter across the Northern Great Plains , 2005 .

[20]  Gabriel del Barrio,et al.  Response of high mountain landscape to topographic variables: Central pyrenees , 1997, Landscape Ecology.

[21]  Dmitri Kavetski,et al.  Representing spatial variability of snow water equivalent in hydrologic and land‐surface models: A review , 2011 .

[22]  Y. Pueyo,et al.  A comparison of simultaneous autoregressive and generalized least squares models for dealing with spatial autocorrelation , 2009 .

[23]  Chris Derksen,et al.  Characterizing local scale snow cover using point measurements during the winter season , 2006 .

[24]  K. Elder,et al.  Interannual Consistency in Fractal Snow Depth Patterns at Two Colorado Mountain Sites , 2005 .

[25]  J. Dozier,et al.  Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: the impact of digital elevation data and independent variable selection , 2005 .

[26]  J. Schweizer,et al.  Snow avalanche formation , 2003 .

[27]  Santiago Beguería,et al.  Variability of snow depth at the plot scale: implications for mean depth estimation and sampling strategies , 2011 .

[28]  Timothy E. Link,et al.  Subgrid variability of snow water equivalent at operational snow stations in the western USA , 2013 .

[29]  Michael Lehning,et al.  Spatial and temporal variability of snow depth and ablation rates in a small mountain catchment , 2010 .

[30]  L. Martz,et al.  An investigation of the spatial association between snow depth and topography in a Prairie agricultural landscape using digital terrain analysis , 1996 .

[31]  R. Essery Modelling fluxes of momentum, sensible heat and latent heat over heterogeneous snow cover , 1997 .

[32]  T. Painter,et al.  Lidar measurement of snow depth: a review , 2013, Journal of Glaciology.

[33]  M. Lehning,et al.  Persistence in intra‐annual snow depth distribution: 2. Fractal analysis of snow depth development , 2011 .

[34]  G. Luzi,et al.  Remote sensing based retrieval of snow cover properties , 2008 .

[35]  S. Fassnacht,et al.  Measurement sampling and scaling for deep montane snow depth data , 2006 .

[36]  J. García‐Ruiz,et al.  Variability of sediment yield from a high mountain catchment, Central Spanish Pyrenees. , 2000 .

[37]  T. Erickson,et al.  Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States , 2005 .

[38]  J. García‐Ruiz,et al.  Runoff and Sediment Transport during the Snowmelt Period in a Mediterranean High-Mountain Catchment , 2009 .

[39]  C. Azorín-Molina,et al.  Mapping the annual evolution of snow depth in a small catchment in the Pyrenees using the long-range terrestrial laser scanning , 2014 .

[40]  David G. Tarboton,et al.  The Influence of the Spatial Distribution of Snow on Basin-Averaged Snowmelt , 1998 .

[41]  Michael Lehning,et al.  A comparison of measurement methods: terrestrial laser scanning, tachymetry and snow probing for the determination of the spatial snow-depth distribution on slopes , 2008, Annals of Glaciology.

[42]  Thomas Grünewald,et al.  Dynamics of snow ablation in a small Alpine catchment observed by repeated terrestrial laser scans , 2012 .

[43]  Michael Lehning,et al.  Meteorological Modeling of Very High-Resolution Wind Fields and Snow Deposition for Mountains , 2010 .

[44]  Michael Lehning,et al.  Scaling properties of wind and snow depth distribution in an Alpine catchment , 2011 .

[45]  Kelly Elder,et al.  Spatial Snow Modeling of Wind-Redistributed Snow Using Terrain-Based Parameters , 2002 .

[46]  S. Fassnacht,et al.  What drives basin scale spatial variability of snowpack properties in northern Colorado , 2014 .

[47]  D. Gray,et al.  Small-Scale Spatial Structure of Shallow Snowcovers , 1996 .

[48]  Marie-Josée Fortin,et al.  SPATIAL ANALYSIS OF LANDSCAPES: CONCEPTS AND STATISTICS , 2005 .

[49]  Michael Lehning,et al.  Altitudinal dependency of snow amounts in two small alpine catchments: can catchment-wide snow amounts be estimated via single snow or precipitation stations? , 2011, Annals of Glaciology.

[50]  Ånund Killingtveit,et al.  Statistical probability distribution of snow depth at the model sub‐grid cell spatial scale , 2005 .