Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposite particles and their applications in lithium ion battery anodes

Hierarchical sea urchin-like structured carbon–Fe3O4 nanocomposite particles composed of a nanoporous interior and a carbon-coated surface have been prepared by a simple, economical and scalable synthetic process. When the nanocomposite particles were tested as lithium ion battery anodes, they exhibited high capacity, excellent cycle stability and rate performance due to their unique hierarchical nanoporous structure and carbon shell.

[1]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[2]  X. Lou,et al.  Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. , 2011, Journal of the American Chemical Society.

[3]  Yang‐Kook Sun,et al.  Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes , 2011 .

[4]  J. Tarascon,et al.  On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential , 2002 .

[5]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[6]  Arumugam Manthiram,et al.  Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage , 2011 .

[7]  M. Armand,et al.  Building better batteries , 2008, Nature.

[8]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[9]  Gi‐Heon Kim,et al.  Fe3O4 Nanoparticles Confined in Mesocellular Carbon Foam for High Performance Anode Materials for Lithium‐Ion Batteries , 2011 .

[10]  Bruno Scrosati,et al.  Nanostructured Sn–C Composite as an Advanced Anode Material in High‐Performance Lithium‐Ion Batteries , 2007 .

[11]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[12]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[13]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[14]  P. Bruce,et al.  Synthesis of ordered mesoporous Fe3O4 and gamma-Fe2O3 with crystalline walls using post-template reduction/oxidation. , 2006, Journal of the American Chemical Society.

[15]  Min Gyu Kim,et al.  Elimination of Extraneous Irreversible Capacity in Mesoporous Tin Phosphate Anode by Amorphous Carbon Coating , 2006 .

[16]  Yunlong Zhao,et al.  Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. , 2010, Nano letters.

[17]  T. Hyeon,et al.  Uniform hematite nanocapsules based on an anode material for lithium ion batteries , 2010 .

[18]  L. Archer,et al.  Composite lithium battery anodes based on carbon@Co3O4 nanostructures: Synthesis and characterization , 2012 .

[19]  Jinwoo Lee,et al.  Highly Improved Rate Capability for a Lithium‐Ion Battery Nano‐Li4Ti5O12 Negative Electrode via Carbon‐Coated Mesoporous Uniform Pores with a Simple Self‐Assembly Method , 2011 .

[20]  Guangmin Zhou,et al.  Graphene-Wrapped Fe(3)O(4) Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries , 2010 .

[21]  Xiaoyi Liang,et al.  Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes , 2011 .

[22]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[23]  Liquan Chen,et al.  Investigation on porous MnO microsphere anode for lithium ion batteries , 2011 .

[24]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[25]  X. Lou,et al.  The comparative lithium storage properties of urchin-like hematite spheres: hollow vs. solid , 2012 .

[26]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[27]  N. Du,et al.  Porous Co3O4 Nanotubes Derived From Co4(CO)12 Clusters on Carbon Nanotube Templates: A Highly Efficient Material For Li‐Battery Applications , 2007 .

[28]  Min Gyu Kim,et al.  Amorphous Carbon-Coated Tin Anode Material for Lithium Secondary Battery , 2005 .

[29]  J. Ryu,et al.  The Role of Metallic Fe and Carbon Matrix in Fe2O3 / Fe / Carbon Nanocomposite for Lithium-Ion Batteries , 2010 .

[30]  Zhan Lin,et al.  Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries , 2011 .

[31]  D. Zhao,et al.  Container effect in nanocasting synthesis of mesoporous metal oxides. , 2011, Journal of the American Chemical Society.

[32]  Xuejie Huang,et al.  Research on Advanced Materials for Li‐ion Batteries , 2009 .

[33]  T. Hyeon,et al.  Facile scalable synthesis of magnetite nanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries. , 2010, Chemical communications.

[34]  C. Sow,et al.  α‐Fe2O3 Nanoflakes as an Anode Material for Li‐Ion Batteries , 2007 .

[35]  Huimeng Wu,et al.  Controlling colloidal superparticle growth through solvophobic interactions. , 2008, Angewandte Chemie.

[36]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[37]  S. Fu,et al.  Template-free synthesis and characterization of novel 3D urchin-like α-Fe2O3 superstructures , 2006 .

[38]  R. Ruoff,et al.  Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. , 2011, ACS nano.

[39]  Chunmei Ban,et al.  Nanostructured Fe3O4/SWNT Electrode: Binder‐Free and High‐Rate Li‐Ion Anode , 2010, Advanced materials.

[40]  Arumugam Manthiram,et al.  Nanostructured electrode materials for electrochemical energy storage and conversion , 2008 .

[41]  J. Tu,et al.  Net-structured NiO–C nanocomposite as Li-intercalation electrode material , 2007 .

[42]  Yu‐Guo Guo,et al.  Synthesis and Lithium Storage Properties of Co3O4 Nanosheet‐Assembled Multishelled Hollow Spheres , 2010 .

[43]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[44]  Jin-Song Hu,et al.  Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium‐Ion Batteries , 2008 .

[45]  Deyan Luan,et al.  α-Fe2O3 nanotubes with superior lithium storage capability. , 2011, Chemical communications.

[46]  Taeghwan Hyeon,et al.  Wrap-bake-peel process for nanostructural transformation from beta-FeOOH nanorods to biocompatible iron oxide nanocapsules. , 2008, Nature materials.

[47]  Chun-hua Chen,et al.  Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance , 2010 .

[48]  D. Wexler,et al.  Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries , 2008 .

[49]  J. Xue,et al.  Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries , 2012 .

[50]  Jian Jiang,et al.  Iron Oxide-Based Nanotube Arrays Derived from Sacrificial Template-Accelerated Hydrolysis: Large-Area Design and Reversible Lithium Storage , 2010 .

[51]  Jaephil Cho,et al.  Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries , 2011 .