Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles.

In this paper we investigate for the first time the near-field optical behavior of two-dimensional Fibonacci plasmonic lattices fabricated by electron-beam lithography on transparent quartz substrates. In particular, by performing near-field optical microscopy measurements and three dimensional Finite Difference Time Domain simulations we demonstrate that near-field coupling of nanoparticle dimers in Fibonacci arrays results in a quasi-periodic lattice of localized nanoparticle plasmons. The possibility to accurately predict the spatial distribution of enhanced localized plasmon modes in quasi-periodic Fibonacci arrays can have a significant impact for the design and fabrication of novel nano-plasmonics devices.

[1]  Ning-Ning Feng,et al.  Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays , 2008 .

[2]  L. Dal Negro,et al.  Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles. , 2007, Optics express.

[3]  F. Payne,et al.  Numerical investigation of field enhancement by metal nano-particles using a hybrid FDTD-PSTD algorithm. , 2007, Optics express.

[4]  A. Lewis,et al.  Near-field characterization of extraordinary optical transmission in sub-wavelength aperture arrays. , 2007, Optics express.

[5]  A. Boltasseva,et al.  Directional Couplers Using Long-Range Surface Plasmon Polariton Waveguides , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[7]  Enrique Maciá,et al.  The role of aperiodic order in science and technology , 2006 .

[8]  Shanhui Fan,et al.  Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides , 2005 .

[9]  George C Schatz,et al.  Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. , 2005, Nano letters.

[10]  D. Wiersma,et al.  Light-pulse propagation in Fibonacci quasicrystals , 2005 .

[11]  Romain Quidant,et al.  Near-field optical transmittance of metal particle chain waveguides. , 2004, Optics express.

[12]  N. Ferralis,et al.  Diffraction from one- and two-dimensional quasicrystalline gratings , 2004 .

[13]  Harry A. Atwater,et al.  Optical pulse propagation in metal nanoparticle chain waveguides , 2003 .

[14]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[15]  G. Schatz,et al.  The Extinction Spectra of Silver Nanoparticle Arrays: Influence of Array Structure on Plasmon Resonance Wavelength and Width† , 2003 .

[16]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[17]  L. Dal Negro,et al.  Light transport through the band-edge states of Fibonacci quasicrystals. , 2003, Physical review letters.

[18]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[19]  Harald Ditlbacher,et al.  Two-dimensional optics with surface plasmon polaritons , 2002 .

[20]  Ron Lifshitz,et al.  The square Fibonacci tiling , 2002 .

[21]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[22]  Bernhard Lamprecht,et al.  Near-field observation of surface plasmon polariton propagation on thin metal stripes , 2001 .

[23]  Harry A. Atwater,et al.  Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit , 2000 .

[24]  On the multifractal spectrum of the Fibonacci chain , 1998 .

[25]  Lukas Novotny,et al.  Facts and artifacts in near-field optical microscopy , 1997 .

[26]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[27]  Nakatsuka,et al.  Photonic dispersion relation in a one-dimensional quasicrystal. , 1994, Physical review. B, Condensed matter.

[28]  Taylor,et al.  Localization of light waves in Fibonacci dielectric multilayers. , 1994, Physical review letters.

[29]  M. Quinten,et al.  Absorption and elastic scattering of light by particle aggregates. , 1993, Applied optics.

[30]  C. Janot,et al.  Quasicrystals: A Primer , 1992 .

[31]  A. Cangellaris,et al.  Analysis of the numerical error caused by the stair-stepped approximation of a conducting boundary in FDTD simulations of electromagnetic phenomena , 1991 .

[32]  Fu,et al.  Spectral structure of two-dimensional Fibonacci quasilattices. , 1991, Physical review. B, Condensed matter.

[33]  Kohmoto,et al.  Localization of optics: Quasiperiodic media. , 1987, Physical review letters.

[34]  Tang,et al.  Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model. , 1987, Physical review. B, Condensed matter.

[35]  Levine,et al.  Quasicrystals. I. Definition and structure. , 1986, Physical review. B, Condensed matter.

[36]  A. Lucas,et al.  Aggregation effect on the infrared absorption spectrum of small ionic crystals , 1976 .