Structural Evidence for a Two-Metal-Ion Mechanism of Group I Intron Splicing

We report the 3.4 angstrom crystal structure of a catalytically active group I intron splicing intermediate containing the complete intron, both exons, the scissile phosphate, and all of the functional groups implicated in catalytic metal ion coordination, including the 2′-OH of the terminal guanosine. This structure suggests that, like protein phosphoryltransferases, an RNA phosphoryltransferase can use a two-metal-ion mechanism. Two Mg2+ ions are positioned 3.9 angstroms apart and are directly coordinated by all six of the biochemically predicted ligands. The evolutionary convergence of RNA and protein active sites on the same inorganic architecture highlights the intrinsic chemical capacity of the two-metal-ion catalytic mechanism for phosphoryl transfer.

[1]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[2]  T. Cech,et al.  In vitro splicing of the ribosomal RNA precursor of tetrahymena: Involvement of a guanosine nucleotide in the excision of the intervening sequence , 1981, Cell.

[3]  T. Cech,et al.  Ribozyme inhibitors: deoxyguanosine and dideoxyguanosine are competitive inhibitors of self-splicing of the Tetrahymena ribosomal ribonucleic acid precursor. , 1986, Biochemistry.

[4]  Jennifer A. Doudna,et al.  RNA-catalysed synthesis of complementary-strand RNA , 1989, Nature.

[5]  T. Steitz,et al.  Structural basis for the 3′‐5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. , 1991, The EMBO journal.

[6]  Mike Carson,et al.  RIBBONS 2.0 , 1991 .

[7]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[8]  AC Tose Cell , 1993, Cell.

[9]  D. Turner,et al.  Binding of guanosine and 3' splice site analogues to a group I ribozyme: interactions with functional groups of guanosine and with additional nucleotides. , 1993, Biochemistry.

[10]  T. Cech,et al.  The importance of being ribose at the cleavage site in the Tetrahymena ribozyme reaction. , 1993, Biochemistry.

[11]  M. Caruthers,et al.  Metal ion catalysis in the Tetrahymena ribozyme reaction , 1993, Nature.

[12]  J. Steitz,et al.  A general two-metal-ion mechanism for catalytic RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[14]  W. Lipscomb,et al.  Two‐Metal Ion Catalysis in Enzymatic Acyl‐ and Phosphoryl‐Transfer Reactions , 1996 .

[15]  Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing. , 1996, Biochemistry.

[16]  G. Charles Dismukes,et al.  Manganese Enzymes with Binuclear Active Sites. , 1996, Chemical reviews.

[17]  L. B. Weinstein,et al.  A second catalytic metal ion in a group I ribozyme , 1997, Nature.

[18]  B. Sjöberg,et al.  Metal ion interaction with cosubstrate in self-splicing of group I introns. , 1997, Nucleic acids research.

[19]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[20]  S. Doublié,et al.  Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution , 1998, Nature.

[21]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[22]  S. Strobel,et al.  A hydrogen-bonding triad stabilizes the chemical transition state of a group I ribozyme. , 1999, Chemistry & biology.

[23]  D. Herschlag,et al.  Three metal ions at the active site of the Tetrahymena group I ribozyme. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Piccirilli,et al.  A new metal ion interaction in the Tetrahymena ribozyme reaction revealed by double sulfur substitution , 1999, Nature Structural Biology.

[25]  Y. Zhao,et al.  Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity. , 2000, Science.

[26]  J. Perona,et al.  Making the most of metal ions , 2001, Nature Structural Biology.

[27]  D. Herschlag,et al.  Defining the catalytic metal ion interactions in the Tetrahymena ribozyme reaction. , 2001, Biochemistry.

[28]  M. Fedor The role of metal ions in RNA catalysis. , 2002, Current opinion in structural biology.

[29]  Identification of an active site ligand for a group I ribozyme catalytic metal ion. , 2002, Biochemistry.

[30]  Scott A. Strobel,et al.  Crystal structure of a self-splicing group I intron with both exons , 2004, Nature.

[31]  T. Cech,et al.  Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. , 2004, Molecular cell.

[32]  Scott A Strobel,et al.  Crystal structure of a group I intron splicing intermediate. , 2004, RNA.

[33]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[34]  James L. Hougland,et al.  Functional Identification of Catalytic Metal Ion Binding Sites within RNA , 2005, PLoS biology.

[35]  B. Golden,et al.  Crystal structure of a phage Twort group I ribozyme–product complex , 2005, Nature Structural &Molecular Biology.