Experimental study of thermal conductivity and phase change performance of nanofluids PCMs

A new sort of nanofluids phase change materials (PCMs) is developed by suspending small amount of TiO2 nanoparticles in saturated BaCl2 aqueous solution. The resulting nanofluids PCMs possess remarkably high thermal conductivities compared to the base material. Cool storage/supply experiments conducted in a small apparatus have shown the excellent phase change performance of the nanofluids PCMs. The cool storage/supply rate and the cool storage/supply capacity all increase greatly those that of BaCl2 aqueous solution without added nanoparticles. The higher thermal performances of nanofluids PCMs indicate that they have a potential for substituting conventional PCMs in cool storage applications.

[1]  Y. Xuan,et al.  Aggregation structure and thermal conductivity of nanofluids , 2003 .

[2]  S. Ju,et al.  Theory of thermal conductance in carbon nanotube composites , 2006 .

[3]  J. Moon,et al.  Effect of ultrasonic treatment and temperature on nanocrystalline TiO2 , 2006 .

[4]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[5]  Luisa F. Cabeza,et al.  Improvement of a thermal energy storage using plates with paraffin–graphite composite , 2005 .

[6]  Prasanta Kumar Das,et al.  Synthesis and characterization of nanofluid for advanced heat transfer applications , 2006 .

[7]  Y. Ahn,et al.  Investigation on characteristics of thermal conductivity enhancement of nanofluids , 2006 .

[8]  Byung Chul Shin,et al.  Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials , 1992 .

[9]  Q. Xue Model for effective thermal conductivity of nanofluids , 2003 .

[10]  G. Lane,et al.  Low temperature heat storage with phase change materials , 1980 .

[11]  Sarit K. Das,et al.  Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects , 2003 .

[12]  Y. Xuan,et al.  Convective heat transfer and flow characteristics of Cu-water nanofluid , 2002, Science China Technological Sciences.

[13]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[14]  Salvatore Vasta,et al.  Thermal conductivity measurement of a PCM based storage system containing carbon fibers , 2005 .

[15]  Hideo Inaba,et al.  New challenge in advanced thermal energy transportation using functionally thermal fluids , 2000 .

[16]  W. Roetzel,et al.  TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY ENHANCEMENT FOR NANOFLUIDS , 2003 .

[17]  J. Fukai,et al.  Anisotropic heat transfer in composites based on high-thermal conductive carbon fibers , 2005 .

[18]  M. Hawlader,et al.  Microencapsulated PCM thermal-energy storage system , 2003 .

[19]  Xianfan Xu,et al.  Thermal Conductivity of Nanoparticle -Fluid Mixture , 1999 .

[20]  Yuanhua Lin,et al.  Interface effect on thermal conductivity of carbon nanotube composites , 2004 .

[21]  C. Bauer,et al.  Thermal Characteristics of a Compact, Passive Thermal Energy Storage Device , 2000, Heat Transfer: Volume 1.

[22]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[23]  Jean-Jacques Greffet,et al.  Heat transfer between two nanoparticles through near field interaction. , 2005, Physical review letters.

[24]  Min Xiao,et al.  Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity , 2002 .

[25]  Tae-Keun Hong,et al.  Study of the enhanced thermal conductivity of Fe nanofluids , 2005 .

[26]  Xinhua Zhu,et al.  Microstructure of compositionally-graded (Ba[sub 1-x]Sr[sub x])TiO₃ thin films epitaxially grown on La[sub 0.5]Sr[sub 0.5]CoO₃-covered (100) LaAlO₃ substrates by pulsed laser deposition , 2005 .

[27]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[28]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[29]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .