PrimarySi29hyperfine structure ofE′centers in nm-sized silica: Probing the microscopic network structure

Point defects in fumed $\ensuremath{\sim}7\text{\ensuremath{-}}\mathrm{nm}$-sized fumed silica nanoparticles have been studied by $X$-, $K$-, and $Q$-band electron spin resonance (ESR) following $10\text{\ensuremath{-}}\mathrm{eV}$ irradiation. The ${E}^{\ensuremath{'}}$ defects are monitored as a function of post manufacture heat treatment with the sample brought into contact with ``bulk'' $\mathrm{Si}∕\mathrm{Si}{\mathrm{O}}_{2}$ entities at elevated temperatures in vacuum $({T}_{\mathrm{an}}=1005\char21{}1205\phantom{\rule{0.2em}{0ex}}\ifmmode^\circ\else\textdegree\fi{}\mathrm{C})$, i.e., the presence of an $\mathrm{Si}∕\mathrm{Si}{\mathrm{O}}_{2}$ interface. This results in a drastic increase in ${E}^{\ensuremath{'}}$ defect density with increasing ${T}_{\mathrm{an}}$, enabling us to resolve the primary $^{29}\mathrm{Si}$ hyperfine (hf) structure of the ${E}^{\ensuremath{'}}$ centers located in the core region of the nanoparticles. Detailed analysis of the observed hf spectra reveals several items pointing to a modification of the specific network structure of the core region of the nanoparticles. An increased hf splitting of $438\ifmmode\pm\else\textpm\fi{}2\phantom{\rule{0.3em}{0ex}}\mathrm{G}$ is observed compared to bulk silica $(418\ifmmode\pm\else\textpm\fi{}2\phantom{\rule{0.3em}{0ex}}\mathrm{G})$ indicating that the core part ${E}^{\ensuremath{'}}$ centers exhibit a more pyramidal defect structure. Moreover, the increased primary hf splitting indicates that the core of the fumed silica particles is densified, possibly associated with the presence of more low-membered rings in the nm-sized silica network.

[1]  V. Afanas’ev,et al.  Electron spin resonance probing of fundamental point defects in nanometer-sized silica particles , 2005 .

[2]  A. Stesmans,et al.  Are intrinsic point defects inadequate as the origin of optical band gap narrowing in fumed silica nanoparticles? , 2005 .

[3]  A. Stesmans,et al.  Interlayer-related paramagnetic defects in stacks of ultrathin layers of SiOx, Al2O3, ZrO2, and HfO2 on (100)Si , 2005 .

[4]  D. Donadio,et al.  Ab initio simulation of photoinduced transformation of small rings in amorphous silica , 2004, cond-mat/0407323.

[5]  A. Stesmans,et al.  Oxygen-deficiency centers in SiO 2 thermally nitrided in NO , 2004 .

[6]  Y. Ohishi,et al.  Microscopic structure of nanometer-sized silica particles , 2004 .

[7]  K. Awazu,et al.  Strained Si–O–Si bonds in amorphous SiO2 materials: A family member of active centers in radio, photo, and chemical responses , 2003 .

[8]  A. Pasquarello,et al.  First-principles modeling of paramagnetic Si dangling-bond defects in amorphous SiO2 , 2002 .

[9]  T. Yoko,et al.  A novel pressure-induced polymorphic transition from fumed silica to transparent amorphous SiO2 at room temperature , 2002 .

[10]  A. Stesmans,et al.  Structural degradation of thermal SiO2 on Si by high-temperature annealing: Defect generation , 2002 .

[11]  K. Lehtinen,et al.  Structure and Properties of Silica Nanoclusters at High Temperatures , 2002 .

[12]  J. Gole,et al.  Formation of ferromagnetic Ni/SiO2 nanospheres , 2002 .

[13]  H. Hosono,et al.  Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO(2). , 2001, Physical review letters.

[14]  J. Chung,et al.  Light absorption of silica nanoparticles , 2001 .

[15]  K. Binder,et al.  Structure and dynamics of amorphous silica surfaces , 2000, cond-mat/0011322.

[16]  G. Pacchioni,et al.  EPR and IR spectral properties of hydrogen-associated bulk and surface defects in SiO 2 : Ab initio calculations , 1998 .

[17]  H. Hosono,et al.  Detection and analysis of 29Si hyperfine structures in ESR spectra of E′ and E′-type centers in SiO2 glasses , 1998 .

[18]  R. Weinstein,et al.  The role of uranium, with and without irradiation, in the achievement of Jc ≈ 300000 A cm−2 at 77 K in large grain melt-textured Y123 , 1998 .

[19]  T. Hyodo,et al.  Effect of Ultraviolet Irradiation on Oxide Fine Grains Studied with Positron Annihilation and ESR , 1997 .

[20]  M. Nihei,et al.  Thermal oxidation of outdiffusing SiO with permeating O2 in a SiO2 film studied by angle-resolved X-ray photoelectron spectroscopy , 1997 .

[21]  V. Afanas’ev,et al.  Point defect generation in SiO2 by interaction with SiO at elevated temperatures , 1997 .

[22]  A. Stesmans,et al.  Annealing induced degradation of thermal SiO2: S center generation , 1996 .

[23]  G. Maciel,et al.  The Fumed Silica Surface: A Study by NMR , 1996 .

[24]  D. Griscom,et al.  29Si superhyperfine interactions of the E′ center: a potential probe of range-II order in silica glass , 1995 .

[25]  Patrick M. Lenahan,et al.  The effects of thermal nitridation and reoxidation on the interfacial stress and structure of silicon dioxide gate dielectrics , 1995 .

[26]  H. Hosono,et al.  Paramagnetic resonance of E′-type centers in Si-implanted amorphous SiO2. Si29 hyperfine structure and characteristics of Zeeman resonances☆ , 1994 .

[27]  Stesmans Structural relaxation of Pb defects at the (111)Si/SiO2 interface as a function of oxidation temperature: The Pb-generation-stress relationship. , 1993, Physical review. B, Condensed matter.

[28]  V. Radzig Reactive silica—a new concept of the structure of active sites , 1993 .

[29]  Nobuo Miyamoto,et al.  Outdiffusion and Subsequent Desorption of Volatile SiO Molecules during Annealing of Thick SiO2 Films in Vacuum , 1993 .

[30]  Van de Walle CG,et al.  First-principles calculations of hyperfine parameters. , 1993, Physical review. B, Condensed matter.

[31]  P. Fedders,et al.  Tight binding calculations for the environmental dependence of the dangling bond g-factor in a-Si , 1992 .

[32]  Devine,et al.  Defect pair creation through ultraviolet radiation in dense, amorphous SiO2. , 1990, Physical review. B, Condensed matter.

[33]  Fowler Wb,et al.  Relationship between hyperfine parameters and the geometry of defects in nonmetallic solids , 1990 .

[34]  D. Griscom Growth and decay kinetics of defect centers in high-purity fused silicas irradiated at 77 K with X-Rays or 6.4-eV laser light , 1990 .

[35]  David M. Haaland,et al.  Kinetics of dissociative chemisorption on strained edge-shared surface defects on dehydroxylated silica , 1989 .

[36]  Devine,et al.  Si-O bond-length modification in pressure-densified amorphous SiO2. , 1987, Physical review. B, Condensed matter.

[37]  David L. Griscom,et al.  On the structures of hydrogen-associated defect centers in irradiated high-purity a-SiO2:OH , 1987 .

[38]  Capponi,et al.  Pressure-induced bond-angle variation in amorphous SiO2. , 1987, Physical review. B, Condensed matter.

[39]  Brower Strain broadening of the dangling-bond resonance at the (111)Si-SiO2 interface. , 1986, Physical review. B, Condensed matter.

[40]  A. K. Koh,et al.  Hyperfine coupling constants and atomic parameters for electron paramagnetic resonance data , 1985 .

[41]  W. Tiller,et al.  Importance of oxygen‐oxygen interactions in silica structures , 1985 .

[42]  W. Gehlhoff,et al.  EPR of iron-boron centres in silicon , 1983 .

[43]  F. L. Galeener,et al.  Planar rings in vitreous silica , 1982 .

[44]  Nobuhiko Ishii,et al.  The g -Values of Defects in Amorphous C, Si and Ge , 1981 .

[45]  D. Griscom E' center in glassy SiO 2 : Microwave saturation properties and confirmation of the primary 29 Si hyperfine structure , 1979 .

[46]  J. Vitko,et al.  ESR studies of hydrogen hyperfine spectra in irradiated vitreous silica , 1978 .

[47]  J. Morton,et al.  Atomic parameters for paramagnetic resonance data , 1978 .

[48]  E. J. Friebele,et al.  Observation and analysis of the primary 29Si hyperfine structure of the E′ center in non-crystalline SiO2 , 1974 .

[49]  G. Hochstrasser,et al.  Surface states of pristine silica surfaces: I. ESR studies of Es′ dangling bonds and of CO2− adsorbed radicals , 1972 .

[50]  A. Reinberg Electron Spin Resonance of Boron in Single—Crystal BeO , 1964 .

[51]  R. H. Silsbee,et al.  Electron Spin Resonance in Neutron‐Irradiated Quartz , 1961 .

[52]  W. V. Smith,et al.  Electric Field Gradients of Atomic p Electrons , 1954 .

[53]  I. Rabi,et al.  Measurement of Nuclear Spin , 1931 .