Climatic mass balance of the ice cap Vestfonna, Svalbard: A spatially distributed assessment using ERA‐Interim and MODIS data

[1] The ice cap Vestfonna in the northern Svalbard archipelago is one of the largest ice bodies of the European Arctic (∼2400 km2), but little is known about its mass balance. We model the climatic mass balance of the ice cap for the period September 2000 to August 2009 on a daily basis. Ablation is calculated by a spatially distributed temperature-radiation-index melt model. Air temperature forcing is provided by ERA-Interim data that is downscaled using data from an automatic weather station operated on the ice cap. Spatially distributed net shortwave radiation fluxes are obtained from standard trigonometric techniques combined with Moderate Resolution Imaging Spectroradiometer-based cloud cover and surface albedo information. Accumulation is derived from ERA-Interim precipitation data that are bias corrected and spatially distributed as a function of elevation. Refreezing is incorporated using the Pmax approach. Results indicate that mass balance years are characterized by short ablation seasons (June to August) and correspondingly longer accumulation periods (September to May). The modeled, annual climatic mass balance rate shows an almost balanced mean of −0.02 ± 0.20 m w.e. yr−1 (meters water equivalent per year) with an associated equilibrium line altitude of 383 ± 54 m above sea level (mean ± one standard deviation). The mean winter balance is +0.32 ± 0.06 m w.e. yr−1, and the mean summer balance −0.35 ± 0.17 m w.e. yr−1. Roughly one fourth of total surface ablation is retained by refreezing indicating that refreezing is an important component of the mass budget of Vestfonna.

[1]  M. Braun,et al.  Snowpack characteristics of vestfonna and de geerfonna (nordaustlandet, svalbard) – a spatiotemporal analysis based on multiyear snow‐pit data , 2011 .

[2]  Christopher Nuth,et al.  Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry , 2010 .

[3]  Michael B. Heflin,et al.  Simultaneous estimation of global present-day water transport and glacial isostatic adjustment , 2010 .

[4]  C. Schneider,et al.  Calibration of glacier volume–area relations from surface extent fluctuations and application to future glacier change , 2010, Journal of Glaciology.

[5]  Andreas Kääb,et al.  Svalbard glacier elevation changes and contribution to sea level rise , 2010 .

[6]  Brian Menounos,et al.  Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery , 2010 .

[7]  L. A. Rasmussen,et al.  Glossary of glacier mass balance and related terms , 2010 .

[8]  Charles S. Zender,et al.  MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland , 2009 .

[9]  Jon Ove Hagen,et al.  Geometric changes and mass balance of the Austfonna ice cap, Svalbard , 2009 .

[10]  J. Jungclaus,et al.  Sea ice in the Barents Sea: seasonal to interannual variability and climate feedbacks in a global coupled model , 2009 .

[11]  Dana E. Veron,et al.  Winter Northern Hemisphere weather patterns remember summer Arctic sea‐ice extent , 2009 .

[12]  M. Meier,et al.  Sea‐level rise from glaciers and ice caps: A lower bound , 2009 .

[13]  Andreas Kääb,et al.  Glacier Volume Changes Using ASTER Satellite Stereo and ICESat GLAS Laser Altimetry. A Test Study on EdgeØya, Eastern Svalbard , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[14]  K. Dethloff,et al.  Simulated circum-Arctic climate changes by the end of the 21st century , 2008 .

[15]  Hongjie Xie,et al.  Evaluation of MODIS snow cover and cloud mask and its application in Northern Xinjiang, China , 2008 .

[16]  C. Werner,et al.  Estimation of Arctic glacier motion with satellite L-band SAR data , 2008 .

[17]  I. O. Dumanskaya Applying the dynamical-statistical method of calculations of the ice redistribution in the White Sea for the solution of climatic and prognostic problems , 2008 .

[18]  Andrea Taurisano,et al.  Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard , 2007, Annals of Glaciology.

[19]  R. Przybylak Recent air-temperature changes in the Arctic , 2007, Annals of Glaciology.

[20]  C. Schneider,et al.  Glacier change and climate forcing in recent decades at Gran Campo Nevado, southernmost Patagonia , 2007, Annals of Glaciology.

[21]  S. Raper,et al.  Glaciological conditions in seven contrasting regions estimated with the degree-day model , 2007, Annals of Glaciology.

[22]  N. Barrand,et al.  Acceleration in thinning rate on western Svalbard glaciers , 2007 .

[23]  S. P. Anderson,et al.  Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century , 2007, Science.

[24]  D. Hall,et al.  Accuracy assessment of the MODIS snow products , 2007 .

[25]  J. Kohler,et al.  The distribution of snow accumulation across the Austfonna ice cap, Svalbard: direct measurements and modelling , 2007 .

[26]  L. A. Rasmussen,et al.  Mass balance of three Svalbard glaciers reconstructed back to 1948 , 2007 .

[27]  Christoph Schillings,et al.  Satellite-Based Actual Evapotranspiration over Drying Semiarid Terrain in West Africa , 2007 .

[28]  T. Murray,et al.  Positive mass balance during the late 20th century on Austfonna, Svalbard, revealed using satellite radar interferometry , 2007, Annals of Glaciology.

[29]  Julienne C. Stroeve,et al.  Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet , 2006 .

[30]  A. Ohmura,et al.  Mass balance of glaciers and ice caps: Consensus estimates for 1961–2004 , 2006 .

[31]  Y. Tachibana,et al.  Intra‐seasonal relationship between the Northern Hemisphere sea ice variability and the North Atlantic Oscillation , 2006 .

[32]  S. Raper,et al.  Low sea level rise projections from mountain glaciers and icecaps under global warming , 2006, Nature.

[33]  J. Stroeve,et al.  Recent changes in the Arctic melt Season , 2006, Annals of Glaciology.

[34]  Martin Funk,et al.  An enhanced temperature-index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d'Arolla, Switzerland , 2005 .

[35]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[36]  J. Oerlemans,et al.  Validation of AVHRR- and MODIS-derived albedos of snow and ice surfaces by means of helicopter measurements , 2005, Journal of Glaciology.

[37]  Taneil Uttal,et al.  Cloud cover comparisons of the MODIS daytime cloud mask with surface instruments at the north slope of Alaska ARM site , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Regine Hock,et al.  Temperature index melt modelling in mountain areas , 2003 .

[39]  J. Hagen,et al.  On the Net Mass Balance of the Glaciers and Ice Caps in Svalbard, Norwegian Arctic , 2003 .

[40]  I. Hanssen‐Bauer,et al.  Past and future climate variations in the Norwegian Arctic: overview and novel analyses , 2003 .

[41]  Javier G. Corripio,et al.  Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain , 2003, Int. J. Geogr. Inf. Sci..

[42]  G. Kaser,et al.  The contribution of increased incoming shortwave radiation to the retreat of the Rwenzori Glaciers, East Africa, during the 20th century , 2003 .

[43]  N. DiGirolamo,et al.  MODIS snow-cover products , 2002 .

[44]  Cecilia M. Bitz,et al.  Dynamics of Recent Climate Change in the Arctic , 2002, Science.

[45]  A. Arendt,et al.  Rapid Wastage of Alaska Glaciers and Their Contribution to Rising Sea Level , 2002, Science.

[46]  Christian Reise,et al.  SoDa: a project for the integration and exploitation of networked solar radiation databases , 2002 .

[47]  M. Dubrovský,et al.  Time Structure of Observed, GCM-Simulated, Downscaled, and Stochastically Generated Daily Temperature Series , 2001 .

[48]  D. Bromwich,et al.  The Atmospheric Hydrologic Cycle over the Arctic Basin from Reanalyses. Part II: Interannual Variability* , 2001 .

[49]  Atsumu Ohmura,et al.  Physical Basis for the Temperature-Based Melt-Index Method , 2001 .

[50]  Rajmund Przybylak,et al.  Temporal and spatial variation of surface air temperature over the period of instrumental observations in the Arctic , 2000 .

[51]  Seelye Martin,et al.  Variations in Surface Air Temperature Observations in the Arctic, 1979-97. , 2000 .

[52]  H. Storch On the Use of “Inflation” in Statistical Downscaling , 1999 .

[53]  R. Huth Statistical downscaling in central Europe: evaluation of methods and potential predictors , 1999 .

[54]  J. B. Ørbæk,et al.  Radiation climate variability in Svalbard: surface and satellite observations , 1999 .

[55]  I. Hanssen‐Bauer,et al.  Long-term trends in precipitation and temperature in the Norwegian Arctic: can they be explained by changes in atmospheric circulation patterns? , 1998 .

[56]  M. Schlesinger,et al.  A Method of Relating General Circulation Model Simulated Climate to the Observed Local Climate. Part I: Seasonal Statistics , 1990 .

[57]  J. Dowdeswell,et al.  Fast-flowing outlet glaciers on Svalbard ice caps , 1990 .

[58]  N. Reeh,et al.  Parameterization of melt rate and surface temperature on the Greenland ice sheet , 1989 .

[59]  E. Palosuo Ice Layers and Superimposition of Ice on the Summit and Slope of Vestfonna, Svalbard , 1987 .

[60]  M. Iqbal An introduction to solar radiation , 1983 .

[61]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[62]  M. Budyko,et al.  Climate and life , 1975 .

[63]  Paul E. Green,et al.  Measurement and Data Analysis , 1970 .

[64]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[65]  K. I. Kondratʹev Radiation in the atmosphere , 1969 .

[66]  F. Linke Vorbereitende betrachtungen : dietheorie der zerstreuung, extinktion und polarisation des lichtes in der atmosphare : die sonnenstrahlung und ihre schwachung in der atmosphare , 1941 .