Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms

Magnetic compass orientation by amphibians, and some insects, is mediated by a light-dependent magnetoreception mechanism. Cryptochrome photopigments, best known for their role in circadian rhythms, are proposed to mediate such responses. In this paper, we explore light-dependent properties of magnetic sensing at three levels: (i) behavioural (wavelength-dependent effects of light on magnetic compass orientation), (ii) physiological (photoreceptors/photopigment systems with properties suggesting a role in magnetoreception), and (iii) molecular (cryptochrome-based and non-cryptochrome-based signalling pathways that are compatible with behavioural responses). Our goal is to identify photoreceptors and signalling pathways that are likely to play a specialized role in magnetoreception in order to definitively answer the question of whether the effects of light on magnetic compass orientation are mediated by a light-dependent magnetoreception mechanism, or instead are due to input from a non-light-dependent (e.g. magnetite-based) magnetoreception mechanism that secondarily interacts with other light-dependent processes.

[1]  K. Kirschfeld,et al.  The pigment system of the photoreceptor 7 yellow in the fly, a complex photoreceptor , 1988, Journal of Comparative Physiology A.

[2]  C. Bowler,et al.  Spectroscopic characterization of a (6-4) photolyase from the green alga Ostreococcus tauri. , 2009, Journal of photochemistry and photobiology. B, Biology.

[3]  Klaus Schulten,et al.  Magnetoreception through cryptochrome may involve superoxide. , 2009, Biophysical journal.

[4]  W. Wiltschko,et al.  Magnetic orientation and magnetoreception in birds and other animals , 2005, Journal of Comparative Physiology A.

[5]  Thorsten Ritz,et al.  Shedding Light on Vertebrate Magnetoreception , 2002, Neuron.

[6]  A. Sancar,et al.  Photochemistry and Photobiology of Cryptochrome Blue-light Photopigments: The Search for a Photocycle , 2005, Photochemistry and photobiology.

[7]  L. Chittka,et al.  The evolution of color vision in insects. , 2001, Annual review of entomology.

[8]  J. Bouly,et al.  Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome , 2009, FEBS letters.

[9]  Bernd Schierwater,et al.  Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass , 2004, Naturwissenschaften.

[10]  J. Phillips,et al.  Magnetic compass orientation by larval Drosophila melanogaster. , 2008, Journal of insect physiology.

[11]  E. Getzoff,et al.  Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor. , 2009, Angewandte Chemie.

[12]  M. Byrdin,et al.  What makes the difference between a cryptochrome and DNA photolyase? A spectroelectrochemical comparison of the flavin redox transitions. , 2009, Journal of the American Chemical Society.

[13]  Klaus Schulten,et al.  Magnetic Field Effects in Chemistry and Biology , 1982 .

[14]  G. Falkenberg,et al.  A novel concept of Fe-mineral-based magnetoreception: histological and physicochemical data from the upper beak of homing pigeons , 2007, Naturwissenschaften.

[15]  E. Dodt,et al.  Mode of action of pineal nerve fibers in frogs. , 1962, Journal of neurophysiology.

[16]  M. Winklhofer,et al.  The Physics of Geomagnetic-Field Transduction in Animals , 2009, IEEE Transactions on Magnetics.

[17]  John C. Montgomery,et al.  Structure and function of the vertebrate magnetic sense , 1997, Nature.

[18]  Use of a Magnetic Compass for Nocturnal Homing Orientation in the Palmate Newt, Lissotriton helveticus , 2008 .

[19]  A. Sancar,et al.  Animal Type 1 Cryptochromes , 2008, Journal of Biological Chemistry.

[20]  K. Kirschfeld,et al.  Absorption properties of a photostable pigment (P456) in rhabdomere 7 of the fly , 1981, Journal of comparative physiology.

[21]  Tracy R. Denaro,et al.  Formation and Function of Flavin Anion Radical in Cryptochrome 1 Blue-Light Photoreceptor of Monarch Butterfly* , 2007, Journal of Biological Chemistry.

[22]  T. Todo,et al.  Cryptochrome is present in the compound eyes and a subset of Drosophila's clock neurons , 2008, The Journal of comparative neurology.

[23]  K. Folta,et al.  Green light: a signal to slow down or stop. , 2007, Journal of experimental botany.

[24]  J. Kirschvink,et al.  Magnetoreception and Electromagnetic Field Effects: Sensory Perception of the Geomagnetic Field in Animals and Humans , 1995 .

[25]  S. Åkesson,et al.  Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light. , 2002, The Journal of experimental biology.

[26]  Kenneth Kragh Jensen,et al.  Light-dependent orientation responses in animals can be explained by a model of compass cue integration. , 2010, Journal of theoretical biology.

[27]  P. J. Hore,et al.  Model calculations of magnetic field effects on the recombination reactions of radicals with anisotropic hyperfine interactions , 2001 .

[28]  Freake Evidence for orientation using the e-vector direction of polarised light in the sleepy lizard tiliqua rugosa , 1999, The Journal of experimental biology.

[29]  Henrik Mouritsen,et al.  Chemical Magnetoreception: Bird Cryptochrome 1a Is Excited by Blue Light and Forms Long-Lived Radical-Pairs , 2007, PloS one.

[30]  M. Vacha,et al.  Tenebrio beetles use magnetic inclination compass , 2008, Naturwissenschaften.

[31]  Henrik Mouritsen,et al.  Visual but not trigeminal mediation of magnetic compass information in a migratory bird , 2009, Nature.

[32]  K. Beyenbach Transport mechanisms of diuresis in Malpighian tubules of insects , 2003, Journal of Experimental Biology.

[33]  J. Phillips,et al.  Light‐Dependent Shift in Bullfrog Tadpole Magnetic Compass Orientation: Evidence for a Common Magnetoreception Mechanism in Anuran and Urodele Amphibians , 2005 .

[34]  D. H. Taylor,et al.  Orientation of Amphibians by Linearly Polarized Light , 1978 .

[35]  A. Bacher,et al.  Magnetic-field effect on the photoactivation reaction of Escherichia coli DNA photolyase , 2008, Proceedings of the National Academy of Sciences.

[36]  C. Gómez-Moreno New roles of flavoproteins in molecular cell biology , 2009, The FEBS Journal.

[37]  P. Zirak,et al.  Absorption and fluorescence spectroscopic characterisation of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry) , 2008 .

[38]  O. Sayeed,et al.  Wavelength-dependent effects of light on magnetic compass orientation in Drosophila melanogaster , 1993, Journal of Comparative Physiology A.

[39]  A. Foá,et al.  Orientation of lizards in a Morris water-maze: roles of the sun compass and the parietal eye , 2009, Journal of Experimental Biology.

[40]  Eduardo Solessio,et al.  Antagonistic chromatic mechanisms in photoreceptors of the parietal eye of lizards , 1993, Nature.

[41]  S. Chris Borland,et al.  Behavioural evidence for use of a light-dependent magnetoreception mechanism by a vertebrate , 1992, Nature.

[42]  T. Fukushi Colour perception of single and mixed monochromatic lights in the blowfly Lucilia cuprina , 1994, Journal of Comparative Physiology A.

[43]  B. Vígh,et al.  Opsin Immunocytochemical Characterization of Different Types of Photoreceptors in the Frog Pineal Organ , 1990, Journal of pineal research.

[44]  K. Kuma,et al.  Identification of cryptochrome DASH from vertebrates , 2004, Genes to cells : devoted to molecular & cellular mechanisms.

[45]  N. Franceschini,et al.  A photostable pigment within the rhabdomere of fly photoreceptors no. 7 , 1978, Journal of comparative physiology.

[46]  W. Wiltschko,et al.  Magnetic Compass of European Robins , 1972, Science.

[47]  K. Kirschfeld,et al.  Ultraviolet sensitivity of fly photoreceptors R7 and R8: Evidence for a sensitising function , 1983, Biophysics of structure and mechanism.

[48]  J. Phillips,et al.  Orientation in a desert lizard (Uma notata): time-compensated compass movement and polarotaxis , 1985, Journal of Comparative Physiology A.

[49]  Wolfgang Wiltschko,et al.  Red light disrupts magnetic orientation of migratory birds , 1993, Nature.

[50]  Jeffrey C. Hall,et al.  CRY, a Drosophila Clock and Light-Regulated Cryptochrome, Is a Major Contributor to Circadian Rhythm Resetting and Photosensitivity , 1998, Cell.

[51]  Steven M. Reppert,et al.  Cryptochrome mediates light-dependent magnetosensitivity in Drosophila , 2008, Nature.

[52]  W. Eldred,et al.  Pineal photoreceptors: Evidence for a vertebrate visual pigment with two physiologically active states , 1978, Vision Research.

[53]  Thorsten Ritz,et al.  Resonance effects indicate a radical-pair mechanism for avian magnetic compass , 2004, Nature.

[54]  J. Phillips,et al.  Two magnetoreception pathways in a migratory salamander , 1986, Science.

[55]  R. Wiltschko,et al.  Magnetic compass orientation in the subterranean rodentCryptomys hottentotus (Bathyergidae) , 1990, Experientia.

[56]  C. Demaine,et al.  The avian pineal gland as an independent magnetic sensor , 1985, Neuroscience Letters.

[57]  W. Wiltschko,et al.  Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons , 2003, The Journal of comparative neurology.

[58]  Thorsten Ritz,et al.  Anisotropic recombination of an immobilized photoinduced radical pair in a 50-μT magnetic field: a model avian photomagnetoreceptor , 2003 .

[59]  J. Heberle,et al.  Blue Light Induces Radical Formation and Autophosphorylation in the Light-sensitive Domain of Chlamydomonas Cryptochrome* , 2007, Journal of Biological Chemistry.

[60]  Danielle E. Chandler,et al.  Magnetic field effects in Arabidopsis thaliana cryptochrome-1. , 2007, Biophysical journal.

[61]  Rüdiger Wehner,et al.  Neurobiology of polarization vision , 1989, Trends in Neurosciences.

[62]  C. Green,et al.  Structure/Function Analysis of Xenopus Cryptochromes 1 and 2 Reveals Differential Nuclear Localization Mechanisms and Functional Domains Important forInteraction with and Repression of CLOCK-BMAL1 , 2007, Molecular and Cellular Biology.

[63]  A. Terakita,et al.  Bistable UV pigment in the lamprey pineal. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[64]  R. Griffiths Shedding light , 1975, Nature.

[65]  W. Wiltschko,et al.  A Magnetic Polarity Compass for Direction Finding in a Subterranean Mammal , 1997, Naturwissenschaften.

[66]  Filip Vandenbussche,et al.  Cryptochrome Blue Light Photoreceptors Are Activated through Interconversion of Flavin Redox States* , 2007, Journal of Biological Chemistry.

[67]  K Adler,et al.  EXTRAOCULAR PHOTORECEPTION IN AMPHIBIANS , 1976, Photophysiology.

[68]  Sönke Johnsen,et al.  Magnetoreception in animals , 2008 .

[69]  M. Vacha,et al.  Effect of light wavelength spectrum on magnetic compass orientation in Tenebrio molitor , 2008, Journal of Comparative Physiology A.

[70]  P. Hore,et al.  Chemical magnetoreception in birds: The radical pair mechanism , 2009, Proceedings of the National Academy of Sciences.

[71]  Thorsten Ritz,et al.  Magnetic compass of birds is based on a molecule with optimal directional sensitivity. , 2009, Biophysical journal.

[72]  K. Schulten,et al.  A model for photoreceptor-based magnetoreception in birds. , 2000, Biophysical journal.

[73]  Roger C. Hardie,et al.  The photoreceptor array of the dipteran retina , 1986, Trends in Neurosciences.

[74]  J. Phillips,et al.  Extraocular magnetic compass in newts , 1999, Nature.

[75]  N. Franceschini,et al.  The senitizing pigment in fly photoreceptors: Properties and candidates , 1983 .

[76]  R. V. Van Gelder,et al.  Action Spectrum of Drosophila Cryptochrome* , 2007, Journal of Biological Chemistry.

[77]  E. Wolf,et al.  A Novel Photoreaction Mechanism for the Circadian Blue Light Photoreceptor Drosophila Cryptochrome* , 2007, Journal of Biological Chemistry.

[78]  C. Timmel,et al.  Possible involvement of superoxide and dioxygen with cryptochrome in avian magnetoreception: Origin of Zeeman resonances observed by in vivo EPR spectroscopy , 2009 .

[79]  Dr. Roswitha Wiltschko,et al.  Magnetic Orientation in Animals , 1995, Zoophysiology.

[80]  Ilya Kuprov,et al.  Chemical compass model of avian magnetoreception , 2008, Nature.

[81]  R. Bittl,et al.  The Signaling State of Arabidopsis Cryptochrome 2 Contains Flavin Semiquinone* , 2007, Journal of Biological Chemistry.

[82]  N. Troje,et al.  Spectral Categories in the Learning Behaviour of Blowflies , 1993 .

[83]  N. Franceschini,et al.  The sensitizing pigment in fly photoreceptors , 1983, Biophysics of structure and mechanism.

[84]  J. Phillips,et al.  The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magnetoreception and polarized light detection in vertebrates. , 2001, The Journal of experimental biology.

[85]  Beason,et al.  Does the avian ophthalmic nerve carry magnetic navigational information? , 1996, The Journal of experimental biology.

[86]  F. J. Diego-Rasilla,et al.  Magnetic compass mediates nocturnal homing by the alpine newt, Triturus alpestris , 2005, Behavioral Ecology and Sociobiology.

[87]  T. Carell,et al.  Structural biology of DNA photolyases and cryptochromes. , 2009, Current opinion in structural biology.

[88]  T. Todo,et al.  The cryptochromes , 2005, Genome Biology.

[89]  M. Davison,et al.  Magnetoreception and its trigeminal mediation in the homing pigeon , 2004, Nature.

[90]  T. Ritz,et al.  Light-dependent magnetoreception: quantum catches and opponency mechanisms of possible photosensitive molecules , 2007, Journal of Experimental Biology.

[91]  Charlotte Helfrich-Förster,et al.  Cryptochrome Mediates Light-Dependent Magnetosensitivity of Drosophila's Circadian Clock , 2009, PLoS biology.

[92]  Wiltschko,et al.  MELATONIN IS CRUCIAL FOR THE MIGRATORY ORIENTATION OF PIED FLYCATCHERS (FICEDULA HYPOLEUCA PALLAS) , 1994, The Journal of experimental biology.

[93]  Borland,et al.  The case for light-dependent magnetic orientation in animals , 1999, The Journal of experimental biology.

[94]  S. Reuss,et al.  Evidence for the involvement of the visual system in mediating magnetic field effects on pineal melatonin synthesis in the rat , 1985, Brain Research.

[95]  T. Todo,et al.  Involvement of Electron Transfer in the Photoreaction of Zebrafish Cryptochrome‐DASH † , 2008, Photochemistry and photobiology.

[96]  R. Muheim,et al.  Magnetic Maps in Animals: A Theory Comes of Age? , 2006, The Quarterly Review of Biology.

[97]  E. Batschelet Circular statistics in biology , 1981 .

[98]  D. H. Taylor,et al.  Extraocular perception of polarized light by orienting salamanders , 1973, Journal of comparative physiology.

[99]  Henrik Mouritsen,et al.  Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[100]  J. Phillips,et al.  Magnetic compass orientation is eliminated under near-infrared light in the eastern red-spotted newt Notophthalmus viridescens , 1992, Animal Behaviour.

[101]  W. Wiltschko,et al.  Directional orientation of birds by the magnetic field under different light conditions , 2010, Journal of The Royal Society Interface.

[102]  K. Kirschfeld,et al.  Sensitizing pigment in the fly , 1983, Biophysics of structure and mechanism.

[103]  K. Kirschfeld,et al.  Chemical identity of the chromophores of fly visual pigment , 1984, Naturwissenschaften.