Quantum-mechanical ab initio simulation of the Raman and IR spectra of Fe3Al2Si3O12 almandine.

The IR and Raman spectra of the Fe(3)Al(2)Si(3)O(12) almandine garnet were simulated using the periodic CRYSTAL code with an all-electron Gaussian-type basis set and the hybrid B3LYP functional. The wavenumbers of the 25 Raman-active modes (3 of A(1g), 8 of E(g), and 14 of F(2g) symmetry) and 34 F(1u) IR-active modes (17 TO and 17 LO) were computed, as were the IR intensities. Calculated wavenumbers are in excellent agreement with the various sets of experimental results, with the mean absolute difference |Delta| being between 4 and 8 cm(-1). Graphical animation, available on the CRYSTAL Web site, provides a very comprehendible description of the movement of atoms and groups in each vibrational mode. The simulated reflectivity spectrum, obtained using a classical dispersion relation, is in excellent agreement with the measured one.

[1]  R. Dovesi,et al.  Quantum-mechanical ab initio simulation of the Raman and IR spectra of Mn3Al2Si3O12 spessartine , 2009 .

[2]  Roberto Dovesi,et al.  Ab initio simulation of the IR spectra of pyrope, grossular, and andradite , 2008, J. Comput. Chem..

[3]  R. Orlando,et al.  Vibrational spectrum of katoite Ca3Al2[(OH)4]3: a periodic ab initio study. , 2006, The journal of physical chemistry. B.

[4]  R. Orlando,et al.  Vibration frequencies of Ca3Fe2Si3O12 andradite: an ab initio study with the CRYSTAL code. , 2005, The journal of physical chemistry. B.

[5]  P. Makreski,et al.  Minerals from Macedonia XIII: Vibrational spectra of some commonly appearing nesosilicate minerals , 2005 .

[6]  R. Orlando,et al.  Vibration Frequencies of Mg3Al2Si3O12 Pyrope. An ab initio study with the CRYSTAL code. , 2005, The journal of physical chemistry. B.

[7]  R. Orlando,et al.  Calculation of the vibration frequencies of α‐quartz: The effect of Hamiltonian and basis set , 2004, J. Comput. Chem..

[8]  R. Orlando,et al.  The vibrational spectrum of calcite (CaCO3): an ab initio quantum-mechanical calculation , 2004 .

[9]  Bartolomeo Civalleri,et al.  The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code , 2004, J. Comput. Chem..

[10]  T. Pilati,et al.  Interpretation of Single-Crystal Vibrational Spectra and Entropy of Pyrope and Almandine Using a Rigid-Ion Lattice-Dynamical Model , 2003 .

[11]  S. Colinart,et al.  Combined external-beam PIXE and μ-Raman characterisation of garnets used in Merovingian jewellery , 2002 .

[12]  Alfredo Pasquarello,et al.  Raman scattering intensities in α-quartz: A first-principles investigation , 2001 .

[13]  B. A. Kolesov,et al.  Raman spectra of silicate garnets , 1998 .

[14]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[15]  A. Hofmeister,et al.  Single-crystal IR spectroscopy of pyrope-almandine garnets with minor amounts of Mn and Ca , 1996 .

[16]  A. Hofmeister,et al.  Single-crystal IR spectroscopy of grossular-andradite garnets , 1995 .

[17]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[18]  T. Armbruster,et al.  A combined temperature dependent57Fe Mössbauer and single crystal X-ray diffraction study of synthetic almandine: evidence for the Gol'danskii-Karyagin effect , 1992 .

[19]  T. Armbruster,et al.  Single-crystal X-ray structure study of synthetic pyrope almandine garnets at 100 and 293 K , 1992 .

[20]  A. Chopelas,et al.  Vibrational spectroscopy of end-member silicate garnets , 1991 .

[21]  Gerald V. Gibbs,et al.  The Crystal Chemistry of the Silicate Garnets , 1971 .

[22]  Raymond K. Moore,et al.  Vibrational spectra of the common silicates: I. The garnets , 1971 .

[23]  W. Spitzer,et al.  Theory of the Optical Properties of Quartz in the Infrared , 1962 .