Energy‐based dissolution simulation using SPH sampling

A novel unified particle‐based method is proposed for real‐time dissolution simulation that is fast, predictable, independent of sampling resolution, and visually plausible. The dissolution model is derived from collision theory and integrated into a smoothed particle hydrodynamics fluid solver. Dissolution occurs when a solute is submerged in solvent. Physical laws govern the local excitation of solute particles based on kinetic energy: when the local excitation energy exceeds a user‐specified threshold (activation energy), the particle will be dislodged from the solid. Solute separation during dissolution is handled using a new Graphics Processing Unit (GPU)‐based region growing method. The use of smoothed particle hydrodynamics sampling for both solute and solvent guarantees a predictable and smooth dissolution process and provides user control of the volume change during the phase transition. A mathematical relationship between the activation energy and dissolution time allows for intuitive artistic control over the global dissolution rate. We demonstrate this method using a number of practical examples, including antacid pills dissolving in water, hydraulic erosion of nonhomogeneous terrains, and melting.

[1]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[2]  Jian-Jun Zhang,et al.  Blue noise sampling using an SPH-based method , 2015, ACM Trans. Graph..

[3]  Bedrich Benes,et al.  Hydraulic Erosion Using Smoothed Particle Hydrodynamics , 2009, Comput. Graph. Forum.

[4]  Bedrich Benes,et al.  Hydraulic erosion , 2006, Comput. Animat. Virtual Worlds.

[5]  J. Baerentzen,et al.  Signed distance computation using the angle weighted pseudonormal , 2005, IEEE Transactions on Visualization and Computer Graphics.

[6]  Greg Turk,et al.  Animating Corrosion and Erosion , 2007, NPH.

[7]  Jakob Andreas Bærentzen,et al.  3D distance fields: a survey of techniques and applications , 2006, IEEE Transactions on Visualization and Computer Graphics.

[8]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[9]  Robert Bridson,et al.  Ghost SPH for animating water , 2012, ACM Trans. Graph..

[10]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[11]  Josef Kittler,et al.  Region growing: a new approach , 1998, IEEE Trans. Image Process..

[12]  Matthias Teschner,et al.  Unified spray, foam and air bubbles for particle-based fluids , 2012, The Visual Computer.

[13]  Jean-Michel Dischler,et al.  Simulating Fluid-Solid Interaction , 2003, Graphics Interface.

[14]  M. Trautz,et al.  Das Gesetz der Reaktionsgeschwindigkeit und der Gleichgewichte in Gasen. Bestätigung der Additivität von Cv‐3/2R. Neue Bestimmung der Integrationskonstanten und der Moleküldurchmesser , 1916 .

[15]  Arthur W. Toga,et al.  Distance field manipulation of surface models , 1992, IEEE Computer Graphics and Applications.

[16]  Matthias Teschner,et al.  Versatile surface tension and adhesion for SPH fluids , 2013, ACM Trans. Graph..

[17]  M. McCall,et al.  Rigid Body Dynamics , 2008 .

[18]  Chenfanfu Jiang,et al.  Augmented MPM for phase-change and varied materials , 2014, ACM Trans. Graph..

[19]  Hyeongseok Ko,et al.  A practical simulation of dispersed bubble flow , 2010 .

[20]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[21]  Robert Bridson,et al.  Fast Poisson disk sampling in arbitrary dimensions , 2007, SIGGRAPH '07.

[22]  Raul Queiroz Feitosa,et al.  A Region-Growing Segmentation Algorithm for GPUs , 2013, IEEE Geoscience and Remote Sensing Letters.

[23]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions: Research Articles , 2007 .

[24]  Arno Schäpe,et al.  Multiresolution Segmentation : an optimization approach for high quality multi-scale image segmentation , 2000 .

[25]  Takahiro Harada,et al.  Real-time Coupling of Fluids and Rigid Bodies , 2007 .

[26]  Bedřich Beneš,et al.  Hydraulic erosion: Research Articles , 2006 .

[27]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[28]  Ronald Fedkiw,et al.  Two-way coupling of fluids to rigid and deformable solids and shells , 2008, ACM Trans. Graph..

[29]  Roy Featherstone,et al.  Rigid Body Dynamics Algorithms , 2007 .

[30]  Jian-Jun Zhang,et al.  A Particle-based Dissolution Model using Chemical Collision Energy , 2015, GRAPP.

[31]  Jakob Andreas Bærentzen,et al.  Signed Distance Computation Using the Angle Weighted Pseudonormal , 2005, IEEE Trans. Vis. Comput. Graph..

[32]  Freiburg i. Br.,et al.  Zeitschrift für anorganische und allgemeine Chemie , 2012 .

[33]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[34]  Huamin Wang,et al.  Animating bubble interactions in a liquid foam , 2012, ACM Trans. Graph..

[35]  Greg Turk,et al.  Rigid fluid: animating the interplay between rigid bodies and fluid , 2004, ACM Trans. Graph..

[36]  Renato Pajarola,et al.  A unified particle model for fluid–solid interactions , 2007, Comput. Animat. Virtual Worlds.

[37]  Paul W. Cleary,et al.  Bubbling and frothing liquids , 2007, ACM Trans. Graph..

[38]  Chang-Hun Kim,et al.  Hybrid Simulation of Miscible Mixing with Viscous Fingering , 2010, Comput. Graph. Forum.

[39]  Matthias Teschner,et al.  Direct Forcing for Lagrangian Rigid-Fluid Coupling , 2009, IEEE Transactions on Visualization and Computer Graphics.

[40]  A. Parker,et al.  A novel method for determining the dissolution kinetics of hydrocolloid powders , 1999 .

[41]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[42]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.