Fluctuation-dissipation theorem consistent approximation of the langevin dynamics model
暂无分享,去创建一个
Chun Liu | Lina Ma | Xiantao Li | Xiantao Li | Chun Liu | Lina Ma
[1] W. G. Hoover. molecular dynamics , 1986, Catalysis from A to Z.
[2] Peter Deuflhard,et al. Scientific Computing with Ordinary Differential Equations , 2002 .
[3] J. Doyle,et al. Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.
[4] J. Weber,et al. Fluctuation Dissipation Theorem , 1956 .
[5] Peter E. Kloeden,et al. THE NUMERICAL STABILITY OF STOCHASTIC ORDINARY DIFFERENTIAL EQUATIONS WITH ADDITIVE NOISE , 2011 .
[6] R. Skeel,et al. Analysis of a few numerical integration methods for the Langevin equation , 2003 .
[7] K. Burrage,et al. NUMERICAL METHODS FOR SECOND-ORDER STOCHASTIC EQUATIONS , 2005 .
[8] B. Leimkuhler,et al. The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics , 2013, 1308.5814.
[9] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[10] J. Doob. The Elementary Gaussian Processes , 1944 .
[11] E. Helfand. Numerical integration of stochastic differential equations , 1979, The Bell System Technical Journal.
[12] Christoph Dellago,et al. Efficient transition path sampling: Application to Lennard-Jones cluster rearrangements , 1998 .
[13] Tamar Schlick,et al. Molecular Modeling and Simulation: An Interdisciplinary Guide , 2010 .
[14] G. Forbes. Molecular Dynamics , 1885, Nature.
[15] G. Ciccotti,et al. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .
[16] Frédéric Legoll,et al. Finite-Temperature Coarse-Graining of One-Dimensional Models: Mathematical Analysis and Computational Approaches , 2010, J. Nonlinear Sci..
[18] C. Brooks. Computer simulation of liquids , 1989 .
[19] R. Kubo. The fluctuation-dissipation theorem , 1966 .
[20] Robert D. Skeel,et al. Integration Schemes for Molecular Dynamics and Related Applications , 1999 .
[21] G. Ciccotti,et al. Algorithms for Brownian dynamics , 2003 .
[22] Jonathan C. Mattingly,et al. Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .
[23] B. Leimkuhler,et al. Robust and efficient configurational molecular sampling via Langevin dynamics. , 2013, The Journal of chemical physics.
[24] O. Penrose,et al. Comparing the Efficiencies of Stochastic Isothermal Molecular Dynamics Methods , 2011 .
[25] Mi-Ching Tsai,et al. Robust and Optimal Control , 2014 .
[26] S. Sharma,et al. The Fokker-Planck Equation , 2010 .
[27] M. Karplus,et al. Stochastic boundary conditions for molecular dynamics simulations of ST2 water , 1984 .
[28] B. Brooks,et al. An analysis of the accuracy of Langevin and molecular dynamics algorithms , 1988 .
[29] M. Karplus,et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .