Fluctuation-dissipation theorem consistent approximation of the langevin dynamics model

We present a numerical method for solving the Langevin dynamics model. Rather than the trajectory-wise accuracy, we focus on the consistency to the equilibrium statistics at the discrete level. A discrete fluctuation-dissipation theorem is imposed to ensure that the statistical properties are preserved.

[1]  W. G. Hoover molecular dynamics , 1986, Catalysis from A to Z.

[2]  Peter Deuflhard,et al.  Scientific Computing with Ordinary Differential Equations , 2002 .

[3]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[4]  J. Weber,et al.  Fluctuation Dissipation Theorem , 1956 .

[5]  Peter E. Kloeden,et al.  THE NUMERICAL STABILITY OF STOCHASTIC ORDINARY DIFFERENTIAL EQUATIONS WITH ADDITIVE NOISE , 2011 .

[6]  R. Skeel,et al.  Analysis of a few numerical integration methods for the Langevin equation , 2003 .

[7]  K. Burrage,et al.  NUMERICAL METHODS FOR SECOND-ORDER STOCHASTIC EQUATIONS , 2005 .

[8]  B. Leimkuhler,et al.  The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics , 2013, 1308.5814.

[9]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[10]  J. Doob The Elementary Gaussian Processes , 1944 .

[11]  E. Helfand Numerical integration of stochastic differential equations , 1979, The Bell System Technical Journal.

[12]  Christoph Dellago,et al.  Efficient transition path sampling: Application to Lennard-Jones cluster rearrangements , 1998 .

[13]  Tamar Schlick,et al.  Molecular Modeling and Simulation: An Interdisciplinary Guide , 2010 .

[14]  G. Forbes Molecular Dynamics , 1885, Nature.

[15]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[16]  Frédéric Legoll,et al.  Finite-Temperature Coarse-Graining of One-Dimensional Models: Mathematical Analysis and Computational Approaches , 2010, J. Nonlinear Sci..

[18]  C. Brooks Computer simulation of liquids , 1989 .

[19]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[20]  Robert D. Skeel,et al.  Integration Schemes for Molecular Dynamics and Related Applications , 1999 .

[21]  G. Ciccotti,et al.  Algorithms for Brownian dynamics , 2003 .

[22]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[23]  B. Leimkuhler,et al.  Robust and efficient configurational molecular sampling via Langevin dynamics. , 2013, The Journal of chemical physics.

[24]  O. Penrose,et al.  Comparing the Efficiencies of Stochastic Isothermal Molecular Dynamics Methods , 2011 .

[25]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .

[26]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[27]  M. Karplus,et al.  Stochastic boundary conditions for molecular dynamics simulations of ST2 water , 1984 .

[28]  B. Brooks,et al.  An analysis of the accuracy of Langevin and molecular dynamics algorithms , 1988 .

[29]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .