4 V room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface

A self-passivating cathode/electrolyte interface achieves stable, room-temperature long-term cycling of 4 V-class Na3(VOPO4)2F|Na4(CB11H12)2(B12H12)|Na all-solid-state sodium batteries with the highest reported discharge cell voltage and cathode-based specific energy.

[1]  Xiaofei Yang,et al.  Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries , 2020 .

[2]  R. Mohtadi Beyond Typical Electrolytes for Energy Dense Batteries , 2020, Molecules.

[3]  L. Duchêne,et al.  Crystallization of closo-borate electrolytes from solution enabling infiltration into slurry-casted porous electrodes for all-solid-state batteries , 2020, Energy Storage Materials.

[4]  Ellen Ivers-Tiffée,et al.  Benchmarking the performance of all-solid-state lithium batteries , 2020 .

[5]  L. Duchêne,et al.  Status and prospects of hydroborate electrolytes for all-solid-state batteries , 2020 .

[6]  Darren H. S. Tan,et al.  From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries , 2020, Nature Nanotechnology.

[7]  S. Roberts,et al.  Pressure-Driven Interface Evolution in Solid-State Lithium Metal Batteries , 2020, Cell Reports Physical Science.

[8]  L. Nazar,et al.  High-Voltage Superionic Halide Solid Electrolytes for All-Solid-State Li-Ion Batteries , 2020 .

[9]  D. Rentsch,et al.  Nido-Borate/Closo-Borate Mixed-Anion Electrolytes for All-Solid-State Batteries , 2020 .

[10]  Felix H. Richter,et al.  The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte , 2020, Joule.

[11]  Perovskites take steps to industrialization , 2020 .

[12]  C. Yoon,et al.  Ni‐Rich Layered Cathode Materials with Electrochemo‐Mechanically Compliant Microstructures for All‐Solid‐State Li Batteries , 2019, Advanced Energy Materials.

[13]  G. Ceder,et al.  Understanding interface stability in solid-state batteries , 2019, Nature Reviews Materials.

[14]  P. Bruce,et al.  The sodium/Na beta" alumina interface: Effect of pressure on voids. , 2019, ACS applied materials & interfaces.

[15]  Michael J. Wang,et al.  Sodium Plating from Na‐β″‐Alumina Ceramics at Room Temperature, Paving the Way for Fast‐Charging All‐Solid‐State Batteries , 2019, Advanced Energy Materials.

[16]  J. Janek,et al.  Stabilizing Effect of a Hybrid Surface Coating on a Ni-Rich NCM Cathode Material in All-Solid-State Batteries , 2019, Chemistry of Materials.

[17]  L. Duchêne,et al.  Direct solution-based synthesis of the Na4(B12H12)(B10H10) solid electrolyte. , 2019, ChemSusChem.

[18]  Erik A. Wu,et al.  Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries , 2019, Advanced Energy Materials.

[19]  J. Michl,et al.  Insertion of Carbenes into Deprotonated nido-Undecaborane, B11H13(2-) , 2019, Molecules.

[20]  R. Černý,et al.  Room-temperature-operating Na solid-state battery with complex hydride as electrolyte , 2019, Electrochemistry Communications.

[21]  L. Duchêne,et al.  Electrochemical Oxidative Stability of Hydroborate-Based Solid-State Electrolytes , 2019, ACS Applied Energy Materials.

[22]  Erik A. Wu,et al.  Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte , 2019, ACS Energy Letters.

[23]  M. Islam,et al.  Fundamentals of inorganic solid-state electrolytes for batteries , 2019, Nature Materials.

[24]  R. Turner,et al.  Influence of Bacterial Physiology on Processing of Selenite, Biogenesis of Nanomaterials and Their Thermodynamic Stability , 2019, Molecules.

[25]  I. Leito,et al.  Simple and scalable synthesis of the carborane anion CB11H12. , 2019, Dalton transactions.

[26]  Yan Yao,et al.  Taming Active Material-Solid Electrolyte Interfaces with Organic Cathode for All-Solid-State Batteries , 2019, Joule.

[27]  Adelaide M. Nolan,et al.  Lithium Chlorides and Bromides as Promising Solid-State Chemistries for Fast Ion Conductors with Good Electrochemical Stability. , 2019, Angewandte Chemie.

[28]  R. Kühnel,et al.  Suppressing Crystallization of Water-in-Salt Electrolytes by Asymmetric Anions Enables Low-Temperature Operation of High-Voltage Aqueous Batteries , 2019, ACS Materials Letters.

[29]  J. Janek,et al.  Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes , 2019, Chemistry of Materials.

[30]  G. Ceder,et al.  Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries , 2019, Journal of Materials Chemistry A.

[31]  Wolfgang G. Zeier,et al.  Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries-An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li6.25Al0.25La3Zr2O12. , 2019, ACS applied materials & interfaces.

[32]  H. Oguchi,et al.  A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries , 2019, Nature Communications.

[33]  H. Hagemann,et al.  Theoretical Study of Halogenated B12H nX(12- n)2- (X = F, Cl, Br). , 2019, The journal of physical chemistry. A.

[34]  Brandon R. Sutherland,et al.  Charging up Stationary Energy Storage , 2019, Joule.

[35]  John S. O. Evans,et al.  Rietveld Refinement: Practical Powder Diffraction Pattern Analysis using TOPAS , 2018 .

[36]  Jun Lu,et al.  Scalable Room-Temperature Synthesis of Multi-shelled Na3(VOPO4)2F Microsphere Cathodes , 2018, Joule.

[37]  R. Černý,et al.  A mixed anion hydroborate/carba-hydroborate as a room temperature Na-ion solid electrolyte , 2018, Journal of Power Sources.

[38]  T. Asano,et al.  Solid Halide Electrolytes with High Lithium‐Ion Conductivity for Application in 4 V Class Bulk‐Type All‐Solid‐State Batteries , 2018, Advanced materials.

[39]  Sen Xin,et al.  Stabilizing a High-Energy-Density Rechargeable Sodium Battery with a Solid Electrolyte , 2018 .

[40]  Gunther Reinhart,et al.  All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production , 2018 .

[41]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[42]  M. Chatenet,et al.  The highly stable aqueous solution of sodium dodecahydro-closo-dodecaborate Na2B12H12 as a potential liquid anodic fuel , 2018 .

[43]  Sehee Lee,et al.  Tailored Organic Electrode Material Compatible with Sulfide Electrolyte for Stable All-Solid-State Sodium Batteries. , 2018, Angewandte Chemie.

[44]  Dong‐Won Kim,et al.  Hybrid solid electrolytes composed of poly(1,4-butylene adipate) and lithium aluminum germanium phosphate for all-solid-state Li/LiNi0.6Co0.2Mn0.2O2 cells , 2018 .

[45]  P. Cui,et al.  Interface Re-Engineering of Li10GeP2S12 Electrolyte and Lithium anode for All-Solid-State Lithium Batteries with Ultralong Cycle Life. , 2018, ACS applied materials & interfaces.

[46]  L. Duchêne,et al.  A stable 3 V all-solid-state sodium–ion battery based on a closo-borate electrolyte , 2017 .

[47]  F. Ciucci,et al.  Metal Borohydrides as Electrolytes for Solid-State Li, Na, Mg, and Ca Batteries: A First-Principles Study , 2017 .

[48]  Donald J. Siegel,et al.  Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12 , 2017 .

[49]  H. Hagemann,et al.  An alternative approach to the synthesis of NaB 3 H 8 and Na 2 B 12 H 12 for solid electrolyte applications , 2017 .

[50]  T. Leichtweiss,et al.  Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes , 2017 .

[51]  T. Leichtweiss,et al.  Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries. , 2017, ACS applied materials & interfaces.

[52]  Sen Xin,et al.  A Plastic-Crystal Electrolyte Interphase for All-Solid-State Sodium Batteries. , 2017, Angewandte Chemie.

[53]  Xinghua Shi,et al.  The electrochemical performance of super P carbon black in reversible Li/Na ion uptake , 2017, Science China Physics, Mechanics & Astronomy.

[54]  L. Duchêne,et al.  A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture. , 2017, Chemical communications.

[55]  S. Orimo,et al.  The renaissance of hydrides as energy materials , 2017 .

[56]  J. Michl,et al.  Anodic Oxidation of 18 Halogenated and/or Methylated Derivatives of CB11H12. , 2017, Inorganic chemistry.

[57]  F. Fauth,et al.  Strong Impact of the Oxygen Content in Na3V2(PO4)2F3–yOy (0 ≤ y ≤ 0.5) on Its Structural and Electrochemical Properties , 2016 .

[58]  V. Stavila,et al.  Stabilizing Superionic-Conducting Structures via Mixed-Anion Solid Solutions of Monocarba-closo-borate Salts , 2016 .

[59]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[60]  Seung M. Oh,et al.  Na3 SbS4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[61]  V. Stavila,et al.  Stabilizing lithium and sodium fast-ion conduction in solid polyhedral-borate salts at device-relevant temperatures , 2016 .

[62]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[63]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[64]  V. Stavila,et al.  Unparalleled Lithium and Sodium Superionic Conduction in Solid Electrolytes with Large Monovalent Cage-like Anions. , 2015, Energy & environmental science.

[65]  Youngsik Kim,et al.  A hybrid solid electrolyte for flexible solid-state sodium batteries , 2015 .

[66]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[67]  Junmei Zhao,et al.  Superior Na-Storage Performance of Low-Temperature-Synthesized Na3(VO(1-x)PO4)2F(1+2x) (0≤x≤1) Nanoparticles for Na-Ion Batteries. , 2015, Angewandte Chemie.

[68]  P. Karen Oxidation State, A Long-Standing Issue , 2015, Angewandte Chemie.

[69]  K. Kang,et al.  A Family of High‐Performance Cathode Materials for Na‐ion Batteries, Na3(VO1−xPO4)2 F1+2x (0 ≤ x ≤ 1): Combined First‐Principles and Experimental Study , 2014 .

[70]  N. Sharma,et al.  Sodium Distribution and Reaction Mechanisms of a Na3V2O2(PO4)2F Electrode during Use in a Sodium-Ion Battery , 2014 .

[71]  S. Orimo,et al.  Sodium superionic conduction in Na2B12H12. , 2014, Chemical communications.

[72]  M. Paskevicius,et al.  Thermal stability of Li2B12H12 and its role in the decomposition of LiBH4. , 2013, Journal of the American Chemical Society.

[73]  A. Remhof,et al.  Pressure and temperature dependence of the decomposition pathway of LiBH4. , 2012, Physical chemistry chemical physics : PCCP.

[74]  Simon Parsons,et al.  The TOPAS symbolic computation system , 2011, Powder Diffraction.

[75]  M. Hirayama,et al.  A lithium superionic conductor. , 2011, Nature materials.

[76]  A. Hayashi,et al.  Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy† , 2010 .

[77]  H. Deiseroth,et al.  Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. , 2008, Angewandte Chemie.

[78]  B. T. King,et al.  The sixteen CB11HnMe12- n-anions with fivefold substitution symmetry : Anodic oxidation and electronic structure , 2007 .

[79]  C. Hu,et al.  The Structure of the Tricosahydrotetracosaborate Anion B24H233 , 2005 .

[80]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .