Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate

We report, and review in detail, experiments resulting in a record 3.7% optical-to-terahertz (THz) conversion efficiency by optical rectification (OR) in cryogenically cooled congruent lithium niobate (cLN) using a near-optimal 680 fs pump pulse at 1030 nm. In addition, we report a record conversion efficiency of 1.7% at room temperature using stoichiometric lithium niobate (sLN) which results in 21.8 μJ of THz energy from a 1.2 mJ optical pulse. Electro-optical sampling measurements reveal the THz pulses to be single-cycle and centered at 0.45 THz. The experimentally measured efficiency, THz waveform, and THz spectrum are in good agreement with theoretical calculations. Finally, spatial beam profile measurements are also provided. To our knowledge, these results represent an order of magnitude improvement in efficiency of THz generation by OR in lithium niobate over previous results.

[1]  Clemens Ruchert,et al.  Spatiotemporal focusing dynamics of intense supercontinuum THz pulses. , 2013, Physical review letters.

[2]  Xiaodong Mu,et al.  Efficient generation of backward terahertz pulses from multiperiod periodically poled lithium niobate. , 2009, Optics letters.

[3]  George Rodriguez,et al.  Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions , 2008 .

[4]  Clemens Ruchert,et al.  Strong-field single-cycle THz pulses generated in an organic crystal , 2011 .

[5]  David H. Auston,et al.  Generation and detection of millimeter waves by picosecond photoconductivity , 1983 .

[6]  Aleem Siddiqui,et al.  Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system. , 2008, Optics letters.

[7]  J. Hebling,et al.  Single attosecond pulse from terahertz assisted high-order harmonic generation , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[8]  Akira J. Ikushima,et al.  Comparison of electro-optic effect between stoichiometric and congruent LiNbO3 , 1999 .

[9]  J. Kuhl,et al.  Velocity matching by pulse front tilting for large area THz-pulse generation. , 2002, Optics express.

[10]  Jiro Itatani,et al.  High degree of molecular orientation by a combination of THz and femtosecond laser pulses , 2011 .

[11]  J. Hebling,et al.  Design of high-energy terahertz sources based on optical rectification. , 2010, Optics express.

[12]  Mark Cronin-Golomb,et al.  Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production. , 2004, Optics letters.

[13]  X. Zhang,et al.  Free‐space electro‐optic sampling of terahertz beams , 1995 .

[14]  H. Hirori,et al.  Nonlinear Optical Phenomena Induced by Intense Single-Cycle Terahertz Pulses , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Y. Y. Lin,et al.  Dispersion of the dielectric function real part for Mg:LiNbO3 crystals at terahertz frequencies , 2010 .

[16]  K. Kawase,et al.  Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling. , 1999, Optics letters.

[17]  Alfred Leitenstorfer,et al.  Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. , 2008, Optics letters.

[18]  Franz X Kärtner,et al.  High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. , 2013, Optics letters.

[19]  R. Shimano,et al.  Intense Terahertz Pulse-Induced Nonlinear Responses in Carbon Nanotubes , 2012 .

[20]  K. Takeuchi,et al.  Simulation study on cascaded terahertz pulse generation in electro-optic crystals. , 2007, Optics express.

[21]  James P. Gordon,et al.  Negative group-velocity dispersion using refraction , 1984 .

[22]  J. Hebling,et al.  Quasi-phase-matching high-harmonic radiation using chirped THz pulses. , 2012, Physical review letters.

[23]  C. Hernández-García,et al.  Photon Source Capabilities of the Jefferson Lab FEL , 2013 .

[24]  T. Yasui,et al.  Fast three-dimensional terahertz computed tomography using real-time line projection of intense terahertz pulse. , 2013, Optics express.

[25]  A. Pashkin,et al.  Nonperturbative interband response of a bulk InSb semiconductor driven off resonantly by terahertz electromagnetic few-cycle pulses. , 2012, Physical review letters.

[26]  Michael J. Hoffmann,et al.  Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities , 2008 .

[27]  Andrew J. Gatesman,et al.  An anti-reflection coating for silicon optics at terahertz frequencies , 2000 .

[28]  A. Bosserhoff,et al.  Label-Free Probing of the Binding State of DNA by Time-Domain Terahertz Sensing , 2000 .

[29]  J. Kuhl,et al.  Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO/sub 3/ in the THz range , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[30]  K. Vodopyanov,et al.  Optical generation of narrow-band terahertz packets in periodically inverted electro-optic crystals: conversion efficiency and optimal laser pulse format. , 2006, Optics express.

[31]  F. Krausz,et al.  Towards generation of mJ-level ultrashort THz pulses by optical rectification , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[32]  F. Krausz,et al.  Generation of sub-mJ terahertz pulses by optical rectification. , 2012, Optics letters.

[33]  R. Morandotti,et al.  Generation of 1.5 microJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. , 2007, Optics express.

[34]  Koichiro Tanaka,et al.  Enhancement of terahertz wave generation by cascaded χ^(2) processes in LiNbO_3 , 2009 .

[35]  Lyubov V. Titova,et al.  Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue , 2013, Biomedical optics express.

[36]  C. Vicario,et al.  Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1. , 2012, Optics letters.

[37]  Compact electron acceleration and bunch compression in THz waveguides. , 2013, Optics express.

[38]  B. Zaks,et al.  Experimental observation of electron–hole recollisions , 2012, Nature.

[39]  J. B. Rosenzweig,et al.  Side-coupled slab-symmetric structure for high-gradient acceleration using terahertz power , 2005 .

[40]  M. Tonouchi,et al.  Terahertz generation by optical rectification in lithium niobate crystal using a shadow mask. , 2012, Optics express.

[41]  E R Brown,et al.  Resonant-optical-cavity photoconductive switch with 0.5% conversion efficiency and 1.0 W peak power. , 2006, Optics letters.