The incorporation of Mo and CNTs in a ZnO@MnO_2 nanoarray enabling flexible asymmetric supercapacitor with ultra-high rate capability

[1]  Jiawei Zhang,et al.  Microreactor facilitated preparation and Ni-doping of MnO2 nanoparticles for supercapacitors , 2022 .

[2]  P. Du,et al.  Fabrication of uniform MnO2 layer-modified activated carbon cloth for high-performance flexible quasi-solid-state asymmetric supercapacitor , 2022, Journal of Materials Science.

[3]  Liyan Yu,et al.  High performance fiber-shaped flexible asymmetric supercapacitor based on MnO2 nanostructure composited with CuO nanowires and carbon nanotubes , 2022, Ceramics International.

[4]  Yin Cheng,et al.  Recent advances in 3D porous MXenes: structures, properties and applications , 2021, Journal of Physics D: Applied Physics.

[5]  Tian C. Zhang,et al.  Single-Step Preparation of Ultrasmall Iron Oxide-Embedded Carbon Nanotubes on Carbon Cloth with Excellent Superhydrophilicity and Enhanced Supercapacitor Performance. , 2021, ACS applied materials & interfaces.

[6]  Xiaogang Zhang,et al.  Self-standing manganese dioxide/graphene carbon nanotubes film electrode for symmetric supercapacitor with high energy density and superior long cycling stability , 2021, Ceramics International.

[7]  Yuliang Cao,et al.  Understanding and Calibration of Charge Storage Mechanism in Cyclic Voltammetry Curves. , 2021, Angewandte Chemie.

[8]  Liyan Yu,et al.  A novel wire-shaped supercapacitor based on MnO2 nanoflakes and carbon nanotubes with high performance synthesized by sacrificial template method , 2021, Applied Surface Science.

[9]  A. Vladár,et al.  Comparative study of multiwall carbon nanotube nanocomposites by Raman, SEM, and XPS measurement techniques , 2021 .

[10]  Shulai Lei,et al.  Interlayer Modification of Pseudocapacitive Vanadium Oxide and Zn(H2O)n 2+ Migration Regulation for Ultrahigh Rate and Durable Aqueous Zinc‐Ion Batteries , 2021, Advanced science.

[11]  Sukhen Das,et al.  Copper-doped α-MnO2 nano-sphere: metamaterial for enhanced supercapacitor and microwave shielding applications , 2021 .

[12]  J. Yeo,et al.  Novel fabrication method of hierarchical planar micro-supercapacitor via laser-induced localized growth of manganese dioxide nanowire arrays , 2021 .

[13]  B. Xia Progress and Perspective on Oxygen Reduction Electrocatalysts toward Practical Fuel Cells. , 2021, Angewandte Chemie.

[14]  X. Tao,et al.  Biomass-based materials for green lithium secondary batteries , 2021 .

[15]  H. Alawadhi,et al.  Fuel cells for carbon capture applications. , 2020, The Science of the total environment.

[16]  Guangyao Ma,et al.  Facile co-deposition of the carbon nanotube@MnO2 heterostructure for high-performance flexible supercapacitors , 2020 .

[17]  Xiangkang Meng,et al.  Overview of transition metal-based composite materials for supercapacitor electrodes , 2020, Nanoscale advances.

[18]  Xiaodong Wang,et al.  A flexible high-performance symmetric quasi-solid supercapacitor based on Ni-doped MnO2 nano-array @ carbon cloth , 2020 .

[19]  H. Xia,et al.  Structure reinforced birnessite with an extended potential window for supercapacitors , 2020 .

[20]  Ya-li Guo,et al.  Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation , 2020 .

[21]  V. Kuzmenko,et al.  Explanation of anomalous rate capability enhancement by manganese oxide incorporation in carbon nanofiber electrodes for electrochemical capacitors , 2020 .

[22]  J. E. ten Elshof,et al.  Defect engineering of MnO2 nanosheets by substitutional doping for printable solid-state micro-supercapacitors , 2020, Nano Energy.

[23]  Dunmin Lin,et al.  Core-shell MnO2@CoS nanosheets with oxygen vacancies for high-performance supercapattery , 2020 .

[24]  Xiao‐nong Cheng,et al.  MnO2 nanoneedles loaded on silicon oxycarbide-derived hierarchically porous carbon for supercapacitor electrodes with enhanced electrochemical performance , 2019 .

[25]  A. Manthiram,et al.  Efficient Li–CO2 Batteries with Molybdenum Disulfide Nanosheets on Carbon Nanotubes as a Catalyst , 2019, ACS Applied Energy Materials.

[26]  Hyun‐Seok Kim,et al.  Fabrication of manganese oxide@nitrogen doped graphene oxide/polypyrrole (MnO2@NGO/PPy) hybrid composite electrodes for energy storage devices , 2019, Journal of Materials Research and Technology.

[27]  Yucheng Wu,et al.  Enhanced electrochemical performance of Sn-doped MnO2 and study on morphology evolution , 2019, Journal of Alloys and Compounds.

[28]  S. E. Hosseini,et al.  Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect , 2019, Applied Sciences.

[29]  D. He,et al.  High mass loading Ni-decorated Co9S8 with enhanced electrochemical performance for flexible quasi-solid-state asymmetric supercapacitors , 2019, Journal of Power Sources.

[30]  Qian Gou,et al.  Facile Synthesis of Porous Ternary MnTiO 3 /TiO 2 /C Composite with Enhanced Electrochemical Performance as Anode Materials for Lithium Ion Batteries , 2019, Energy Technology.

[31]  Xiaoming He,et al.  High-performance 2.5 V flexible aqueous asymmetric supercapacitors based on K+/Na+-inserted MnO2 nanosheets , 2019, Electrochimica Acta.

[32]  Yibing Xie Electrochemical Performance of Transition Metal-coordinated Polypyrrole: A Mini Review. , 2019, Chemical record.

[33]  Yongsong Luo,et al.  Cable-like double-carbon layers for fast ion and electron transport: An example of CNT@NCT@MnO2 3D nanostructure for high-performance supercapacitors , 2019, Carbon.

[34]  Chang Yu,et al.  Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: Challenges and perspectives , 2019, Nano Energy.

[35]  C. Li,et al.  Hierarchical structured porous N-doped carbon coating MnO microspheres with enhanced electrochemical performances as anode materials for lithium-ion batteries , 2019, Electrochimica Acta.

[36]  Jie Zhan,et al.  Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors , 2019, Electrochimica Acta.

[37]  X. Gong,et al.  All‐Solid‐State Flexible Asymmetric Supercapacitors Fabricated by the Binder‐Free Hydrophilic Carbon Cloth@MnO2 and Hydrophilic Carbon Cloth@Polypyrrole Electrodes , 2019, Advanced Electronic Materials.

[38]  Hongxia Wang,et al.  Boosting the cycling stability of transition metal compounds-based supercapacitors , 2019, Energy Storage Materials.

[39]  G. Cao,et al.  A low crystallinity oxygen-vacancy-rich Co3O4 cathode for high-performance flexible asymmetric supercapacitors , 2018 .

[40]  Guangyao Ma,et al.  Metal‐Ion (Fe, V, Co, and Ni)‐Doped MnO2 Ultrathin Nanosheets Supported on Carbon Fiber Paper for the Oxygen Evolution Reaction , 2017 .

[41]  Qiuying Xia,et al.  High‐Performance 2.6 V Aqueous Asymmetric Supercapacitors based on In Situ Formed Na0.5MnO2 Nanosheet Assembled Nanowall Arrays , 2017, Advanced materials.

[42]  D. He,et al.  Flexible and Wearable All‐Solid‐State Supercapacitors with Ultrahigh Energy Density Based on a Carbon Fiber Fabric Electrode , 2017 .

[43]  Xiaojun Wu,et al.  Peapod‐like Li3VO4/N‐Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for High‐Energy Lithium‐Ion Capacitors , 2017, Advanced materials.

[44]  Jeong Sook Ha,et al.  A Patterned Graphene/ZnO UV Sensor Driven by Integrated Asymmetric Micro‐Supercapacitors on a Liquid Metal Patterned Foldable Paper , 2017 .

[45]  D. He,et al.  Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors , 2017 .

[46]  Yang Li,et al.  Fe2O3 Nanoneedles on Ultrafine Nickel Nanotube Arrays as Efficient Anode for High‐Performance Asymmetric Supercapacitors , 2017 .

[47]  H. Xia,et al.  Dual support ensuring high-energy supercapacitors via high-performance NiCo2S4@Fe2O3 anode and working potential enlarged MnO2 cathode , 2017 .

[48]  Qiuying Xia,et al.  Phosphate Ion Functionalized Co3O4 Ultrathin Nanosheets with Greatly Improved Surface Reactivity for High Performance Pseudocapacitors , 2017, Advanced materials.

[49]  Minshen Zhu,et al.  Highly Integrated Supercapacitor-Sensor Systems via Material and Geometry Design. , 2016, Small.

[50]  Hui Xia,et al.  Amorphous FeOOH Quantum Dots Assembled Mesoporous Film Anchored on Graphene Nanosheets with Superior Electrochemical Performance for Supercapacitors , 2016 .

[51]  Minghao Yu,et al.  A Novel Exfoliation Strategy to Significantly Boost the Energy Storage Capability of Commercial Carbon Cloth , 2015, Advanced materials.

[52]  Meng Li,et al.  Flexible Solid‐State Supercapacitor Based on Graphene‐based Hybrid Films , 2014 .

[53]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[54]  J. Xue,et al.  Integrated Synthesis of Nitrogen-Doped Mesoporous Carbon from Melamine Resins with Superior Performance in Supercapacitors , 2014 .

[55]  Yi Xie,et al.  Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. , 2013, Nano letters.

[56]  Jiangtian Li,et al.  Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. , 2013, Nanoscale.

[57]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[58]  F. Favier,et al.  Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. , 2008, ACS applied materials & interfaces.

[59]  A. Olabi,et al.  Application of graphene in energy storage device – A review , 2021 .

[60]  Yuan-Yao Li,et al.  MnO2-based carbon nanofiber cable for supercapacitor applications , 2021 .

[61]  Sanggeun Jeon,et al.  Body‐Attachable and Stretchable Multisensors Integrated with Wirelessly Rechargeable Energy Storage Devices , 2016, Advanced materials.

[62]  N. Mizuno,et al.  Molybdenum-doped α-MnO2 as an efficient reusable heterogeneous catalyst for aerobic sulfide oxygenation , 2016 .

[63]  Bin Zhao,et al.  Facile Synthesis of Hematite Quantum‐Dot/Functionalized Graphene‐Sheet Composites as Advanced Anode Materials for Asymmetric Supercapacitors , 2015 .