On generalized Ekeland’s variational principle and equivalent formulations for set-valued mappings

We propose a very weak type of generalized distances called a weak τ-function and use it to weaken the assumptions about lower semicontinuity in existing versions of Ekeland’s variational principle and equivalent formulations.

[1]  P. Loridan ε-solutions in vector minimization problems , 1984 .

[2]  M. A. Krasnosel'skii,et al.  Solvability of nonlinear operator equations , 1971 .

[3]  X. X. Huang Stability Results for Ekeland's ε Variational Principle for Set-Valued Mappings , 2002 .

[4]  R. R. Phelps,et al.  Support cones in Banach spaces and their applications , 1974 .

[5]  Andreas H. Hamel,et al.  Equivalents to Ekeland's variational principle in uniform spaces , 2005 .

[6]  Hédy Attouch,et al.  Stability Results for Ekeland's ε-Variational Principle and Cone Extremal Solutions , 1993, Math. Oper. Res..

[7]  Phan Quoc Khanh,et al.  Are several recent generalizations of Ekeland’s variational principle more general than the original principle? , 2003 .

[8]  Tomonari Suzuki,et al.  Generalized Distance and Existence Theorems in Complete Metric Spaces , 2001 .

[9]  W. Oettli,et al.  Equivalents of Ekeland's principle , 1993, Bulletin of the Australian Mathematical Society.

[10]  I. Ekeland On the variational principle , 1974 .

[11]  Jean-Paul Penot,et al.  The drop theorem,the petal theorem and Ekeland's variational principle , 1986 .

[12]  G. Kassay,et al.  Ekeland's principle for vector equilibrium problems , 2007 .

[13]  Sociedad Colombiana de Matemáticas Revista colombiana de matemáticas , 1967 .

[14]  Andreas H. Hamel Phelps’ lemma, Danes’ drop theorem and Ekeland’s principle in locally convex spaces , 2003 .

[15]  Phan Quoc Khanh,et al.  On Ekeland’s Variational Principle for Pareto Minima of Set-Valued Mappings , 2012, J. Optim. Theory Appl..

[16]  I. Vályi A general maximality principle and a fixed point theorem in uniform space , 1985 .

[17]  Aram V. Arutyunov,et al.  One remark to Ekeland's variational principle☆ , 1997 .

[18]  Shi Shu-zhong,et al.  A Generalization of Ekeland's ϵ-Variational Principle and Its Borwein–Preiss Smooth Variant , 2000 .

[19]  Christiane Tammer,et al.  Minimal elements for product orders , 2008 .

[20]  Huanyin Chen,et al.  EXCHANGE RINGS SATISFYING STABLE RANGE CONDITIONS , 2002 .

[21]  Lai-Jiu Lin,et al.  Ekeland's variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces , 2006 .

[22]  J. Borwein,et al.  A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions , 1987 .

[23]  Le van Hot Fixed point theorems for multivalued mappings , 1982 .

[24]  Truong Xuan Duc Ha Variants of the Ekeland Variational Principle for a set-valued map involving the Clarke Normal Cone , 2006 .

[25]  Li Yang,et al.  NOTE ON THE RESULTS WITH LOWER SEMI-CONTINUITY , 2002 .

[26]  Jing-Hui Qiu Local completeness, drop theorem and Ekeland's variational principle , 2005 .

[27]  El Amrouss,et al.  VARIANTES DU PRINCIPE VARIATIONNEL D'EKELAND ET APPLICATIONS , 2006 .

[28]  Daishi Kuroiwa,et al.  On set-valued optimization , 2001 .

[29]  Dinh Ngoc Quy,et al.  A generalized distance and enhanced Ekeland’s variational principle for vector functions , 2010 .

[30]  J. Caristi,et al.  Fixed point theorems for mapping satisfying inwardness conditions , 1976 .

[31]  C. Zălinescu,et al.  On the vectoral Ekeland's variational principle and minimal points in product spaces , 2000 .

[32]  Daniel Tataru,et al.  Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms , 1992 .

[33]  Tomonari Suzuki,et al.  Generalized Caristi's fixed point theorems by Bae and others , 2005 .

[34]  Wataru Takahashi,et al.  NONCONVEX MINIMIZATION THEOREMS AND FIXED POINT THEOREMS IN COMPLETE METRIC SPACES , 1996 .

[35]  Andreas H. Hamel,et al.  Minimal element theorems and Ekeland's principle with set relations , 2006 .

[36]  X. X. Huang New Stability Results for Ekeland's ϵ Variational Principles for Vector-Valued and Set-Valued Maps☆ , 2001 .

[37]  Truong Xuan Duc Ha Some Variants of the Ekeland Variational Principle for a Set-Valued Map , 2005 .

[38]  Sehie Park On generalizations of the Ekeland-type variational principles , 2000 .

[39]  Truong Xuan Duc Ha The Ekeland variational principle for set-valued maps involving coderivatives , 2003 .

[40]  Lai-Jiu Lin,et al.  Some equivalent formulations of the generalized Ekeland’s variational principle and their applications , 2007 .

[41]  T. Q. Bao,et al.  Variational principles for set-valued mappings with applications to multiobjective optimization , 2007 .