Kendall's rank correlation on quantized data: An interval-valued approach
暂无分享,去创建一个
[1] Visvanathan Ramesh,et al. An Intensity-augmented Ordinal Measure for Visual Correspondence , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).
[2] K. Pearson. Contributions to the Mathematical Theory of Evolution , 1894 .
[3] Thierry Denoeux,et al. Nonparametric rank-based statistics and significance tests for fuzzy data , 2005, Fuzzy Sets Syst..
[4] F. Klawonn,et al. Robust Rank Correlation Coecients on the Basis of Fuzzy Orderings: Initial Steps , 2008 .
[5] G. P. Sillitto. The distribution of Kendall's tau coefficient of rank correlation in rankings containing ties. , 1947, Biometrika.
[6] Didier Dubois,et al. Statistical reasoning with set-valued information: Ontic vs. epistemic views , 2014, Int. J. Approx. Reason..
[7] Olgierd Hryniewicz,et al. Efficient Calculation of Kendall's τ for Interval Data , 2012, SMPS.
[8] Olgierd Hryniewicz,et al. Fuzzy Kendall tau Statistic for Autocorrelated Data , 2008, SMPS.
[9] Petros Daras,et al. Robust SIFT-based feature matching using Kendall's rank correlation measure , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).
[10] Inés Couso,et al. Generalizing the Wilcoxon rank-sum test for interval data , 2015, Int. J. Approx. Reason..
[11] Eyke Hüllermeier,et al. A formal and empirical analysis of the fuzzy gamma rank correlation coefficient , 2012, Inf. Sci..