Lanthanide-directed metal-organic coordination networks.

The synthesis of two-dimensional metal-organic networks (2D-MOCNs) on solid substrates is a rapidly growing field of research due to their potential applications in gas sensing, catalysis, energy storage, spintronics, and quantum information. In addition, the possibility of using lanthanides as coordination nodes makes them a very straightforward alternative to create an ordered array of magnetic atoms on a surface, thus paving the way for their use in information storage at the single-atom level. This feature article reviews the strategies to design two-dimensional periodic nanoarchitectures comprising lanthanide atoms in ultra-high vacuum (UHV) environment, focusing on lanthanide-directed 2D-MOCNs on metal surfaces and decoupling substrates. The characterization of their structure, electronic, and magnetic properties is also discussed, including the use of state-of-the-art scanning probe microscopies and photoelectron spectroscopies, complemented by density functional theory calculations and multiplet simulations.

[1]  Rodolfo Miranda,et al.  Stoichiometry-Directed Two-Level Hierarchical Growth of Lanthanide-Based Supramolecular Nanoarchitectures. , 2023, Chemistry.

[2]  G. Aromí,et al.  Magnetic molecules on surfaces: SMMs and beyond , 2023, Coordination Chemistry Reviews.

[3]  Rodolfo Miranda,et al.  Engineering Periodic Dinuclear Lanthanide-Directed Networks Featuring Tunable Energy Level Alignment and Magnetic Anisotropy by Metal Exchange. , 2022, Small.

[4]  B. Harvey,et al.  Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding , 2022, Science.

[5]  A. Heinrich,et al.  Harnessing the Quantum Behavior of Spins on Surfaces , 2021, Advanced materials.

[6]  L. Vandersypen,et al.  Quantum-coherent nanoscience , 2021, Nature Nanotechnology.

[7]  A. Heinrich,et al.  A perspective on surface-adsorbed single atom magnets as atomic-scale magnetic memory , 2021, Applied Physics Letters.

[8]  L. Persichetti,et al.  Correlation between Electronic Configuration and Magnetic Stability in Dysprosium Single Atom Magnets. , 2021, Nano letters.

[9]  P. Neugebauer,et al.  Lanthanide‐Based Metal‐Organic‐Frameworks for Proton Conduction and Magnetic Properties , 2021, European Journal of Inorganic Chemistry.

[10]  J. Seco,et al.  Single-Molecule Magnets: From Mn12-ac to dysprosium metallocenes, a travel in time , 2021, Coordination Chemistry Reviews.

[11]  A. Popov,et al.  Exceptionally High Blocking Temperature of 17 K in a Surface‐Supported Molecular Magnet , 2021, Advanced materials.

[12]  Rodolfo Miranda,et al.  Tuning the Magnetic Anisotropy of Lanthanides on a Metal Substrate by Metal-Organic Coordination. , 2021, Small.

[13]  A. Heinrich,et al.  Engineering atomic-scale magnetic fields by dysprosium single atom magnets , 2021, Nature Communications.

[14]  G. Moore,et al.  Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice , 2021, Nature communications.

[15]  R. Marin,et al.  Shining new light on multifunctional lanthanide single-molecule magnets. , 2020, Angewandte Chemie.

[16]  Agnes E. Thorarinsdottir,et al.  Metal-Organic Framework Magnets. , 2020, Chemical reviews.

[17]  B. Büchner,et al.  Substrate‐Independent Magnetic Bistability in Monolayers of the Single‐Molecule Magnet Dy2ScN@C80 on Metals and Insulators , 2019, Angewandte Chemie.

[18]  A. Popov,et al.  Single-Electron Lanthanide-Lanthanide Bonds Inside Fullerenes toward Robust Redox-Active Molecular Magnets , 2019, Accounts of chemical research.

[19]  A. Seitsonen,et al.  Understanding the Superior Stability of Single‐Molecule Magnets on an Oxide Film , 2019, Advanced science.

[20]  J. Barth,et al.  In-situ growth of gadolinium phthalocyaninato sandwich complexes on the Ag(111) surface. , 2019, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  B. Büchner,et al.  High Blocking Temperature of Magnetization and Giant Coercivity in the Azafullerene Tb2@C79N with a Single‐Electron Terbium–Terbium Bond , 2019, Angewandte Chemie.

[22]  K. Ollefs,et al.  Europium Cyclooctatetraene Nanowire Carpets: A Low-Dimensional, Organometallic, and Ferromagnetic Insulator. , 2019, The journal of physical chemistry letters.

[23]  Fu-Sheng Guo,et al.  Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet , 2018, Science.

[24]  K. Reuter,et al.  Assembly of Robust Holmium-Directed 2D Metal-Organic Coordination Complexes and Networks on the Ag(100) Surface. , 2018, ACS nano.

[25]  A. Seitsonen,et al.  Metalation of Porphyrins by Lanthanide Atoms at Interfaces: Direct Observation and Stimulation of Cerium Coordination to 2H-TPP/Ag(111) , 2018 .

[26]  Mei Guo,et al.  Molecular magnetism of lanthanide: Advances and perspectives , 2017, Coordination Chemistry Reviews.

[27]  R. Miranda,et al.  Long-Range Orientational Self-Assembly, Spatially Controlled Deprotonation, and Off-Centered Metalation of an Expanded Porphyrin. , 2017, Journal of the American Chemical Society.

[28]  Fu-Sheng Guo,et al.  A Dysprosium Metallocene Single-Molecule Magnet Functioning at the Axial Limit. , 2017, Angewandte Chemie.

[29]  David P. Mills,et al.  Molecular magnetic hysteresis at 60 kelvin in dysprosocenium , 2017, Nature.

[30]  T. Michely,et al.  On-Surface Synthesis of Sandwich Molecular Nanowires on Graphene. , 2017, Journal of the American Chemical Society.

[31]  R. Sessoli Nanoscience: Single-atom data storage , 2017, Nature.

[32]  Yan‐Zhen Zheng,et al.  On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III) Single-Molecule Magnet. , 2016, Angewandte Chemie.

[33]  M. Pivetta,et al.  Superlattice of Single Atom Magnets on Graphene. , 2016, Nano letters.

[34]  A. Soncini,et al.  Relay-Like Exchange Mechanism through a Spin Radical between TbPc2 Molecules and Graphene/Ni(111) Substrates. , 2016, ACS nano.

[35]  Lei Dong,et al.  Self-assembly of metal-organic coordination structures on surfaces , 2016 .

[36]  C. Lutz,et al.  Reading and writing single-atom magnets , 2016, Nature.

[37]  M. Pivetta,et al.  Giant Hysteresis of Single‐Molecule Magnets Adsorbed on a Nonmagnetic Insulator , 2016, Advanced materials.

[38]  J. Barth,et al.  Quasicrystallinity expressed in two-dimensional coordination networks. , 2016, Nature chemistry.

[39]  W. Wernsdorfer,et al.  A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. , 2016, Journal of the American Chemical Society.

[40]  Ž. Šljivančanin,et al.  Magnetic remanence in single atoms , 2016, Science.

[41]  B. Delley,et al.  Out-of-Plane Alignment of Er(trensal) Easy Magnetization Axes Using Graphene. , 2016, ACS nano.

[42]  Yang Wang,et al.  Surface-Supported Robust 2D Lanthanide-Carboxylate Coordination Networks. , 2015, Small.

[43]  J. M. Gottfried Surface chemistry of porphyrins and phthalocyanines , 2015 .

[44]  K. Kern,et al.  Self-assembly of bis(phthalocyaninato)terbium on metal surfaces , 2015 .

[45]  J. Barth,et al.  Orthogonal insertion of lanthanide and transition-metal atoms in metal-organic networks on surfaces. , 2015, Angewandte Chemie.

[46]  J. Barth,et al.  Porphyrins at interfaces. , 2015, Nature chemistry.

[47]  S. Brooker,et al.  Review of purely 4f and mixed-metal nd-4f single-molecule magnets containing only one lanthanide ion , 2014 .

[48]  A. Seitsonen,et al.  Five-Vertex Lanthanide Coordination on Surfaces: A Route to Sophisticated Nanoarchitectures and Tessellations , 2014 .

[49]  Jinkui Tang,et al.  Equatorially coordinated lanthanide single ion magnets. , 2014, Journal of the American Chemical Society.

[50]  F. Choueikani,et al.  Magnetism of TbPc2 SMMs on ferromagnetic electrodes used in organic spintronics. , 2013, Chemical communications.

[51]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[52]  A. Seitsonen,et al.  Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly , 2013, Proceedings of the National Academy of Sciences.

[53]  R. Winpenny,et al.  Lanthanide single-molecule magnets. , 2013, Chemical reviews.

[54]  B. You,et al.  Self-organized Gd atomic superlattice on Ag(111): Scanning tunneling microscopy and kinetic Monte Carlo simulations , 2013 .

[55]  Bruce Dunn,et al.  New Porous Crystals of Extended Metal-Catecholates , 2012 .

[56]  Shangfeng Yang,et al.  An endohedral single-molecule magnet with long relaxation times: DySc2N@C80. , 2012, Journal of the American Chemical Society.

[57]  M. Murugesu The orientation is in the details , 2012, Nature Chemistry.

[58]  J. Tao,et al.  Twist angle perturbation on mixed (phthalocyaninato)(porphyrinato) dysprosium(III) double-decker SMMs. , 2012, Chemical communications.

[59]  A. Caneschi,et al.  Magnetic anisotropy in a dysprosium/DOTA single-molecule magnet: beyond simple magneto-structural correlations. , 2012, Angewandte Chemie.

[60]  M. Murugesu,et al.  An organometallic sandwich lanthanide single-ion magnet with an unusual multiple relaxation mechanism. , 2011, Journal of the American Chemical Society.

[61]  J. Long,et al.  Exploiting single-ion anisotropy in the design of f-element single-molecule magnets , 2011 .

[62]  J. Barth,et al.  Assembly and manipulation of rotatable cerium porphyrinato sandwich complexes on a surface. , 2011, Angewandte Chemie.

[63]  J. Veciana,et al.  Surface supramolecular organization of a terbium(III) double-decker complex on graphite and its single molecule magnet behavior. , 2011, Journal of the American Chemical Society.

[64]  Liviu F Chibotaru,et al.  A non-sandwiched macrocyclic monolanthanide single-molecule magnet: the key role of axiality. , 2011, Chemistry.

[65]  A. Caneschi,et al.  X‐Ray Detected Magnetic Hysteresis of Thermally Evaporated Terbium Double‐Decker Oriented Films , 2010, Advanced materials.

[66]  K. Kern,et al.  Spin and orbital magnetic moment anisotropies of monodispersed bis(phthalocyaninato)terbium on a copper surface. , 2010, Journal of the American Chemical Society.

[67]  M. Yamashita,et al.  Scanning Tunneling Microscopy Investigation of Tris(phthalocyaninato)yttrium Triple-Decker Molecules Deposited on Au(111) , 2010 .

[68]  J. Veciana,et al.  Probing the magnetic properties of three interconvertible redox states of a single-molecule magnet with magnetic circular dichroism spectroscopy. , 2010, Journal of the American Chemical Society.

[69]  F. Jaroschik,et al.  Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2019 , 2009, Coordination Chemistry Reviews.

[70]  M. Yamashita,et al.  A Low-Temperature Scanning Tunneling Microscope Investigation of a Nonplanar Dysprosium−Phthalocyanine Adsorption on Au(111) , 2009 .

[71]  J. Barth Fresh perspectives for surface coordination chemistry , 2009 .

[72]  M. Mannini,et al.  Organizing and addressing magnetic molecules. , 2009, Inorganic chemistry.

[73]  M. Mannini,et al.  XAS and XMCD investigation of Mn12 monolayers on gold. , 2008, Chemistry.

[74]  Liviu F Chibotaru,et al.  Structure, magnetism, and theoretical study of a mixed-valence Co(II)3Co(III)4 heptanuclear wheel: lack of SMM behavior despite negative magnetic anisotropy. , 2008, Journal of the American Chemical Society.

[75]  A. Seitsonen,et al.  Interaction of Cerium Atoms with Surface-Anchored Porphyrin Molecules , 2008 .

[76]  S. Koshihara,et al.  Lanthanide double-decker complexes functioning as magnets at the single-molecular level. , 2003, Journal of the American Chemical Society.

[77]  N. Ishikawa,et al.  Determination of ligand-field parameters and f-electronic structures of double-decker bis(phthalocyaninato)lanthanide complexes. , 2003, Inorganic chemistry.

[78]  Michael N. Leuenberger,et al.  Quantum computing in molecular magnets , 2000, Nature.

[79]  K. W. Hipps,et al.  Physical Properties and Metal Ion Specific Scanning Tunneling Microscopy Images of Metal(II) Tetraphenylporphyrins Deposited from Vapor onto Gold (111) , 2000 .

[80]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.