Investigation of ZrO2 – Gd2O3 Based High-k Materials as Capacitor Dielectrics

Atomic layer deposition (ALD) of ZrO 2 ―Gd 2 O 3 nanolaminates and mixtures was investigated for the preparation of a high permittivity dielectric material. Variation in the relative number of ALD cycles for constituent oxides allowed one to obtain films with controlled composition. Pure ZrO 2 films possessed monoclinic and higher permittivity cubic or tetragonal phases, whereas the inclusion of Gd 2 O 3 resulted in the disappearance of the monoclinic phase. Changes in phase composition were accompanied with increased permittivity of mixtures and laminates with low Gd content. Further increase in the lower permittivity Gd 2 O 3 content above 3.4 cat. % resulted in the decreased permittivity of the mixtures. Leakage currents generally decreased with increasing Gd content, whereby laminated structures demonstrated smaller leakage currents than mixed films at a comparable Gd content. Concerning the bottom electrode materials, the best results in terms of permittivity and leakage currents were achieved with Ru, allowing a capacitance equivalent oxide thickness of ∼ 1 nm and a current density of 3 × 10 ―8 A/cm 2 at 1 V. Charge storage values up to 60 nC/mm 2 were obtained for mixtures and laminates with thickness below 30 nm. In general, at electric fields below 2-3 MV/cm, normal and trap-compensated Poole-Frenkel conduction mechanisms were competing, whereas at higher fields, Fowler-Nordheim and/or trap-assisted tunneling started to dominate.

[1]  C. Wenger,et al.  The role of the HfO2–TiN interface in capacitance–voltage nonlinearity of Metal-Insulator-Metal capacitors , 2009 .

[2]  Akira Toriumi,et al.  Structural and electrical properties of HfLaOx films for an amorphous high-k gate insulator , 2006 .

[3]  J. Heitmann,et al.  Deposition temperature effect on electrical properties and interface of high-k ZrO2 capacitor , 2008 .

[4]  Stephen Taylor,et al.  Dielectric relaxation of lanthanum doped zirconium oxide , 2009 .

[5]  Mikko Ritala,et al.  Atomic layer deposition of high capacitance density Ta2O5-ZrO2 based dielectrics for metal-insulator-metal structures , 2010 .

[6]  R. Grimes,et al.  Defect cluster formation in M2O3-doped cubic ZrO2 , 2000 .

[7]  H. Osten,et al.  Effect of oxide structure on the Fermi-level pinning at metal/Gd2O3 interfaces , 2008 .

[8]  J. Heitmann,et al.  Physical and electrical characterization of high-k ZrO2 metal–insulator–metal capacitor , 2008 .

[9]  Heiner Ryssel,et al.  Impact of interface variations on J-V and C-V polarity asymmetry of MIM capacitors with amorphous and crystalline Zr(1-x)AlxO2 films , 2009 .

[10]  K. Kukli,et al.  Properties of (Nb1 − xTax)2O5 solid solutions and (Nb1 − xTax)2O5-ZrO2 nanolaminates grown by Atomic Layer Epitaxy , 1997 .

[11]  Tuomo Suntola,et al.  Atomic Layer Epitaxy , 1989 .

[12]  Carver A. Mead,et al.  The Effect of Trapping States on Tunneling in Metal Semiconductor Junctions , 1969 .

[13]  Mikko Ritala,et al.  Electrical properties of thin zirconium and hafnium oxide high-k gate dielectrics grown by atomic layer deposition from cyclopentadienyl and ozone precursors , 2009 .

[14]  M. Fanciulli,et al.  Atomic layer deposition of LaxZr1−xO2−δ (x=0.25) high-k dielectrics for advanced gate stacks , 2009 .

[15]  Jörgen Olsson,et al.  Variable work function in MOS capacitors utilizing nitrogen-controlled TiNx gate electrodes , 2004 .

[16]  Raghaw Rai,et al.  Characteristics of atomic-layer-deposited thin HfxZr1−xO2 gate dielectrics , 2007 .

[17]  C. Wenger,et al.  Synchrotron radiation x-ray photoelectron spectroscopy study on the interface chemistry of high-k PrxAl2−xO3 (x=0–2) dielectrics on TiN for dynamic random access memory applications , 2007 .

[18]  Paul R. Chalker,et al.  Permittivity enhancement of hafnium dioxide high-κ films by cerium doping , 2008 .

[19]  E. Bertagnolli,et al.  Lanthanum-Zirconate and Lanthanum-Aluminate Based High- κ Dielectric Stacks on Silicon Substrates , 2009 .

[20]  W. R. Harrell,et al.  Implications of advanced modeling on the observation of Poole–Frenkel effect saturation , 2002 .

[21]  M. Kaiser,et al.  Spontaneous nanoclustering of ZrO2 in atomic layer deposited LayZr1−yOx thin films , 2008 .

[22]  K. Kukli,et al.  Atomic layer deposition of ZrO2 and HfO2 on deep trenched and planar silicon , 2007 .

[23]  J. Robertson Maximizing performance for higher K gate dielectrics , 2008 .

[24]  Paul T. Williams,et al.  Advanced cyclopentadienyl precursors for atomic layer deposition of ZrO2 thin films , 2008 .

[25]  M. Nakahara,et al.  Etching technique for ruthenium with a high etch rate and high selectivity using ozone gas , 2001 .

[26]  J. Aarik,et al.  Growth kinetics and structure formation of ZrO2 thin films in chloride-based atomic layer deposition process , 2002 .

[27]  Jeong Hwan Kim,et al.  Reduction of Electrical Defects in Atomic Layer Deposited HfO2 Films by Al Doping , 2010 .

[28]  K. Kukli,et al.  Atomic Layer Deposition of High-Permittivity Yttrium-Doped HfO2 Films , 2009 .

[29]  Yuan Taur,et al.  Modeling and characterization of quantization, polysilicon depletion, and direct tunneling effects in MOSFETs with ultrathin oxides , 1999, IBM J. Res. Dev..

[30]  Pascale Mazoyer,et al.  Evolution of materials technology for stacked-capacitors in 65 nm embedded-DRAM , 2005 .

[31]  T. Sajavaara,et al.  Gadolinium oxide thin films by atomic layer deposition , 2005 .

[32]  D. Kwong,et al.  Physical and electrical characteristics of high-κ gate dielectric Hf(1−x)LaxOy , 2006 .

[33]  Mikko Ritala,et al.  Tailoring the dielectric properties of HfO2–Ta2O5 nanolaminates , 1996 .

[34]  Mikko Ritala,et al.  Behavior of zirconium oxide films processed from novel monocyclopentadienyl precursors by atomic layer deposition , 2009 .

[35]  Mikko Ritala,et al.  Development of Dielectric Properties of Niobium Oxide, Tantalum Oxide, and Aluminum Oxide Based Nanolayered Materials , 2001 .

[36]  K. Kukli,et al.  Atomic layer deposition of zirconium oxide from zirconium tetraiodide, water and hydrogen peroxide , 2001 .

[37]  T. Schram,et al.  Flatband voltage shift of ruthenium gated stacks and its link with the formation of a thin ruthenium oxide layer at the ruthenium/dielectric interface , 2007 .

[38]  P. Kirsch,et al.  Increasing permittivity in HfZrO thin films by surface manipulation , 2009 .

[39]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[40]  S. Yun,et al.  Effect of Plasma on Characteristics of Zirconium Oxide Films Deposited by Plasma-Enhanced Atomic Layer Deposition , 2005 .

[41]  D. Vanderbilt,et al.  Structural, electronic, and dielectric properties of ultrathin zirconia films on silicon , 2005 .

[42]  Manuel F. M. Costa,et al.  Stabilization of ZrO2 PVD coatings with Gd2O3 , 2004 .

[43]  A. Asenov,et al.  Impact of device geometry and doping strategy on linearity and RF performance in Si/SiGe MODFETs , 2004, Microelectron. Reliab..

[44]  K. Kukli,et al.  Properties of Ta2 O 5‐Based Dielectric Nanolaminates Deposited by Atomic Layer Epitaxy , 1997 .

[45]  Jong-Wan Park,et al.  Characteristics of lanthanum hafnium oxide deposited by electron cyclotron resonance atomic layer deposition , 2008 .

[46]  C. Adelmann,et al.  Dielectric properties of dysprosium- and scandium-doped hafnium dioxide thin films , 2007 .

[47]  P. Kirsch,et al.  Higher permittivity rare earth doped HfO2 for sub-45-nm metal-insulator-semiconductor devices , 2007 .

[48]  J. Klootwijk,et al.  Enhanced electrical properties of atomic layer deposited La2O3 thin films with embedded ZrO2 nanocrystals , 2008 .

[49]  J. Simmons Conduction in thin dielectric films , 1971 .